## Nodal lengths of eigenfunctions in the disc

HTML articles powered by AMS MathViewer

- by Xiaolong Han, Michael Murray and Chuong Tran PDF
- Proc. Amer. Math. Soc.
**147**(2019), 1817-1824 Request permission

## Abstract:

In this paper, we derive the sharp lower and upper bounds of nodal lengths of Laplacian eigenfunctions in the disc.## References

- Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR**0167642** - Stephen Breen,
*Uniform upper and lower bounds on the zeros of Bessel functions of the first kind*, J. Math. Anal. Appl.**196**(1995), no. 1, 1–17. MR**1359929**, DOI 10.1006/jmaa.1995.1395 - Jochen Brüning and Dieter Gromes,
*Über die Länge der Knotenlinien schwingender Membranen*, Math. Z.**124**(1972), 79–82 (German). MR**287202**, DOI 10.1007/BF01142586 - Harold Donnelly and Charles Fefferman,
*Nodal sets of eigenfunctions on Riemannian manifolds*, Invent. Math.**93**(1988), no. 1, 161–183. MR**943927**, DOI 10.1007/BF01393691 - V. M. Gichev,
*Some remarks on spherical harmonics*, Algebra i Analiz**20**(2008), no. 4, 64–86 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**20**(2009), no. 4, 553–567. MR**2473744**, DOI 10.1090/S1061-0022-09-01061-9 - Fang-Hua Lin,
*Nodal sets of solutions of elliptic and parabolic equations*, Comm. Pure Appl. Math.**44**(1991), no. 3, 287–308. MR**1090434**, DOI 10.1002/cpa.3160440303 - Alexander Logunov,
*Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure*, Ann. of Math. (2)**187**(2018), no. 1, 221–239. MR**3739231**, DOI 10.4007/annals.2018.187.1.4 - Alexander Logunov,
*Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture*, Ann. of Math. (2)**187**(2018), no. 1, 241–262. MR**3739232**, DOI 10.4007/annals.2018.187.1.5 - Alessandro Savo,
*Lower bounds for the nodal length of eigenfunctions of the Laplacian*, Ann. Global Anal. Geom.**19**(2001), no. 2, 133–151. MR**1826398**, DOI 10.1023/A:1010774905973 - G. N. Watson,
*A Treatise on the Theory of Bessel Functions*, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR**0010746** - Shing-Tung Yau,
*Open problems in geometry*, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 1–28. MR**1216573**

## Additional Information

**Xiaolong Han**- Affiliation: Department of Mathematics, California State University, Northridge, California 91325
- MR Author ID: 932160
- Email: xiaolong.han@csun.edu
**Michael Murray**- Affiliation: Department of Mathematics, California State University, Northridge, California 91325
- Email: michael.murray.921@my.csun.edu
**Chuong Tran**- Affiliation: Department of Mathematics, California State University, Northridge, California 91325
- Email: chuong.tran.561@my.csun.edu
- Received by editor(s): April 3, 2018
- Received by editor(s) in revised form: August 28, 2018
- Published electronically: January 9, 2019
- Communicated by: Micheal Hitrik
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 1817-1824 - MSC (2010): Primary 58J50, 35J05, 35P15
- DOI: https://doi.org/10.1090/proc/14408
- MathSciNet review: 3910446