On the regularity and partial regularity of extremal solutions of a Lane–Emden system
HTML articles powered by AMS MathViewer
- by Hatem Hajlaoui
- Proc. Amer. Math. Soc. 147 (2019), 1987-1998
- DOI: https://doi.org/10.1090/proc/13789
- Published electronically: January 18, 2019
- PDF | Request permission
Abstract:
In this paper, we consider the system $-\Delta u =\lambda (v+1)^p,\;\;-\Delta v = \gamma (u+1)^\theta$ on a smooth bounded domain $\Omega$ in $\mathbb {R}^N$ with Dirichlet boundary condition $u=v=0$ on $\partial \Omega .$ Here $\lambda ,\gamma$ are positive parameters and $1 < p \le \theta$. Let $x_0$ be the largest root of the polynomial \begin{align*} H(x) = x^4 - &\frac {16p\theta (p+1)(\theta +1)}{(p\theta -1)^2}x^2 + \frac {16p\theta (p+1)(\theta +1)(p+\theta +2)}{(p\theta -1)^3}x\\ &-\frac {16p\theta (p+1)^2(\theta +1)^2}{(p\theta -1)^4}. \end{align*} We show that the extremal solutions associated to the above system are bounded provided $N<2+2x_0.$ This improves the previous work by Craig Cowan (2015). We also prove that if $N\geq 2+2x_0,$ then the singular set of any extremal solution has Hausdorff dimension less than or equal to $N-(2+2x_0).$References
- Antonio Boccuto and Enzo Mitidieri, Regularity results for positive solutions of a semilinear elliptic system, Ann. Mat. Pura Appl. (4) 179 (2001), 125–147. MR 1848761, DOI 10.1007/BF02505951
- Haïm Brezis, Thierry Cazenave, Yvan Martel, and Arthur Ramiandrisoa, Blow up for $u_t-\Delta u=g(u)$ revisited, Adv. Differential Equations 1 (1996), no. 1, 73–90. MR 1357955
- Haim Brezis and Juan Luis Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443–469. MR 1605678
- Xavier Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension 4, Comm. Pure Appl. Math. 63 (2010), no. 10, 1362–1380. MR 2681476, DOI 10.1002/cpa.20327
- Xavier Cabré and Antonio Capella, Regularity of radial minimizers and extremal solutions of semilinear elliptic equations, J. Funct. Anal. 238 (2006), no. 2, 709–733. MR 2253739, DOI 10.1016/j.jfa.2005.12.018
- Craig Cowan, Liouville theorems for stable Lane-Emden systems with biharmonic problems, Nonlinearity 26 (2013), no. 8, 2357–2371. MR 3084715, DOI 10.1088/0951-7715/26/8/2357
- Craig Cowan, Regularity of the extremal solutions in a Gelfand system problem, Adv. Nonlinear Stud. 11 (2011), no. 3, 695–700. MR 2840001, DOI 10.1515/ans-2011-0310
- Craig Cowan, Regularity of stable solutions of a Lane-Emden type system, Methods Appl. Anal. 22 (2015), no. 3, 301–311. MR 3404764, DOI 10.4310/MAA.2015.v22.n3.a4
- Craig Cowan, Pierpaolo Esposito, and Nassif Ghoussoub, Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 1033–1050. MR 2644777, DOI 10.3934/dcds.2010.28.1033
- Craig Cowan and Mostafa Fazly, Regularity of the extremal solutions associated to elliptic systems, J. Differential Equations 257 (2014), no. 11, 4087–4107. MR 3264416, DOI 10.1016/j.jde.2014.08.002
- Craig Cowan and Nassif Ghoussoub, Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 291–305. MR 3148117, DOI 10.1007/s00526-012-0582-4
- Michael G. Crandall and Paul H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975), no. 3, 207–218. MR 382848, DOI 10.1007/BF00280741
- Juan Dávila and Olivier Goubet, Partial regularity for a Liouville system, Discrete Contin. Dyn. Syst. 34 (2014), no. 6, 2495–2503. MR 3177645, DOI 10.3934/dcds.2014.34.2495
- Louis Dupaigne, Stable solutions of elliptic partial differential equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 143, Chapman & Hall/CRC, Boca Raton, FL, 2011. MR 2779463, DOI 10.1201/b10802
- Louis Dupaigne, Alberto Farina, and Boyan Sirakov, Regularity of the extremal solutions for the Liouville system, Geometric partial differential equations, CRM Series, vol. 15, Ed. Norm., Pisa, 2013, pp. 139–144. MR 3156892, DOI 10.1007/978-88-7642-473-1_{7}
- Hatem Hajlaoui, Abdellaziz Harrabi, and Foued Mtiri, Liouville theorems for stable solutions of the weighted Lane-Emden system, Discrete Contin. Dyn. Syst. 37 (2017), no. 1, 265–279. MR 3583478, DOI 10.3934/dcds.2017011
- Hatem Hajlaoui, Abdellaziz Harrabi, and Dong Ye, On stable solutions of the biharmonic problem with polynomial growth, Pacific J. Math. 270 (2014), no. 1, 79–93. MR 3245849, DOI 10.2140/pjm.2014.270.79
- Yvan Martel, Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23 (1997), no. 1, 161–168. MR 1688823
- Fulbert Mignot and Jean-Pierre Puel, Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations 5 (1980), no. 8, 791–836 (French). MR 583604, DOI 10.1080/03605308008820155
- Marcelo Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc. 37 (2005), no. 3, 405–416. MR 2131395, DOI 10.1112/S0024609305004248
- Gueorgui Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 11, 997–1002 (English, with English and French summaries). MR 1779693, DOI 10.1016/S0764-4442(00)00289-5
- Philippe Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math. 221 (2009), no. 5, 1409–1427. MR 2522424, DOI 10.1016/j.aim.2009.02.014
- Salvador Villegas, Boundedness of extremal solutions in dimension 4, Adv. Math. 235 (2013), 126–133. MR 3010053, DOI 10.1016/j.aim.2012.11.015
- Dong Ye and Feng Zhou, Boundedness of the extremal solution for semilinear elliptic problems, Commun. Contemp. Math. 4 (2002), no. 3, 547–558. MR 1918759, DOI 10.1142/S0219199702000701
Bibliographic Information
- Hatem Hajlaoui
- Affiliation: Institut Supérieur des Mathématiques Appliquées et de l’Informatique de Kairouan, Université de Kairouan, Tunisie.
- Email: hajlouihatem@gmail.com
- Received by editor(s): January 31, 2017
- Published electronically: January 18, 2019
- Communicated by: Guofang Wei
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1987-1998
- MSC (2010): Primary 35G30, 35B65; Secondary 35P30
- DOI: https://doi.org/10.1090/proc/13789
- MathSciNet review: 3937676