On the finite generation of relative cohomology for Lie superalgebras
HTML articles powered by AMS MathViewer
- by Andrew Maurer
- Proc. Amer. Math. Soc. 147 (2019), 1897-1910
- DOI: https://doi.org/10.1090/proc/14345
- Published electronically: January 28, 2019
- PDF | Request permission
Abstract:
The author establishes the finite generation of the cohomology ring of a classical Lie superalgebra relative to an even subsuperalgebra. A spectral sequence is constructed to provide conditions for when this relative cohomology ring is Cohen–Macaulay. With finite generation established, support varieties for modules are defined via the relative cohomology, which generalize those of Boe, Kujawa, and Nakano [Trans. Amer. Math. Soc. 262 (2010), no. 12, 6551-6590].References
- J. L. Alperin and L. Evens, Representations, resolutions and Quillen’s dimension theorem, J. Pure Appl. Algebra 22 (1981), no. 1, 1–9. MR 621284, DOI 10.1016/0022-4049(81)90079-7
- Irfan Bagci, Jonathan R. Kujawa, and Daniel K. Nakano, Cohomology and support varieties for Lie superalgebras of type $W(n)$, Int. Math. Res. Not. IMRN , posted on (2008), Art. ID rnn115, 42. MR 2448087, DOI 10.1093/imrn/rnn115
- D. J. Benson, Representations and cohomology. II, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1998. Cohomology of groups and modules. MR 1634407
- Brian D. Boe, Jonathan R. Kujawa, and Daniel K. Nakano, Cohomology and support varieties for Lie superalgebras. II, Proc. Lond. Math. Soc. (3) 98 (2009), no. 1, 19–44. MR 2472160, DOI 10.1112/plms/pdn019
- Brian D. Boe, Jonathan R. Kujawa, and Daniel K. Nakano, Cohomology and support varieties for Lie superalgebras, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6551–6590. MR 2678986, DOI 10.1090/S0002-9947-2010-05096-2
- Daniel G. Brown, Relative cohomology of finite groups and polynomial growth, J. Pure Appl. Algebra 97 (1994), no. 1, 1–13. MR 1310744, DOI 10.1016/0022-4049(94)90036-1
- Jon F. Carlson, The varieties and the cohomology ring of a module, J. Algebra 85 (1983), no. 1, 104–143. MR 723070, DOI 10.1016/0021-8693(83)90121-7
- Jon F. Carlson and Daniel K. Nakano, On the structure of cohomology rings of $p$-nilpotent Lie algebras, Transform. Groups 19 (2014), no. 3, 721–734. MR 3233523, DOI 10.1007/s00031-014-9276-7
- Leo G. Chouinard, Projectivity and relative projectivity over group rings, J. Pure Appl. Algebra 7 (1976), no. 3, 287–302. MR 401943, DOI 10.1016/0022-4049(76)90055-4
- Edward Cline, Brian Parshall, and Leonard Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2) 45 (1993), no. 4, 511–534. MR 1245719, DOI 10.2748/tmj/1178225846
- Leonard Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224–239. MR 137742, DOI 10.1090/S0002-9947-1961-0137742-1
- Eric M. Friedlander and Brian J. Parshall, Cohomology of infinitesimal and discrete groups, Math. Ann. 273 (1986), no. 3, 353–374. MR 824427, DOI 10.1007/BF01450727
- Eric M. Friedlander and Brian J. Parshall, Support varieties for restricted Lie algebras, Invent. Math. 86 (1986), no. 3, 553–562. MR 860682, DOI 10.1007/BF01389268
- Eric M. Friedlander and Brian J. Parshall, Geometry of $p$-unipotent Lie algebras, J. Algebra 109 (1987), no. 1, 25–45. MR 898334, DOI 10.1016/0021-8693(87)90161-X
- Eric M. Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209–270. MR 1427618, DOI 10.1007/s002220050119
- D. B. Fuch and D. A. Leĭtes, Cohomology of Lie superalgebras, C. R. Acad. Bulgare Sci. 37 (1984), no. 12, 1595–1596. MR 826386
- Caroline Gruson, Finitude de l’homologie de certains modules de dimension finie sur une super algèbre de Lie, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 531–553 (French, with English summary). MR 1450424
- G. Hochschild, Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246–269. MR 80654, DOI 10.1090/S0002-9947-1956-0080654-0
- G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2) 57 (1953), 591–603. MR 54581, DOI 10.2307/1969740
- Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\scr {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237, DOI 10.1090/gsm/094
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI 10.1016/0001-8708(77)90017-2
- Victor G. Kac and Minoru Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 415–456. MR 1327543, DOI 10.1007/978-1-4612-0261-5_{1}5
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Gustav I. Lehrer, Daniel K. Nakano, and Ruibin Zhang, Detecting cohomology for Lie superalgebras, Adv. Math. 228 (2011), no. 4, 2098–2115. MR 2836115, DOI 10.1016/j.aim.2011.06.033
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- B. B. Venkov, Cohomology algebras for some classifying spaces, Dokl. Akad. Nauk SSSR 127 (1959), 943–944 (Russian). MR 0108788
Bibliographic Information
- Andrew Maurer
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- Email: andrew.b.maurer@gmail.com
- Received by editor(s): February 2, 2018
- Received by editor(s) in revised form: July 27, 2018
- Published electronically: January 28, 2019
- Additional Notes: This work was partially supported by the Research and Training Group in Algebraic Geometry, Algebra, and Number Theory grant DMS-1344994 funded by the National Science Foundation.
- Communicated by: Kailash C. Misra
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 1897-1910
- MSC (2010): Primary 17B10
- DOI: https://doi.org/10.1090/proc/14345
- MathSciNet review: 3937668