Modular symbols for Fermat curves
HTML articles powered by AMS MathViewer
- by Özlem Ejder
- Proc. Amer. Math. Soc. 147 (2019), 2305-2319
- DOI: https://doi.org/10.1090/proc/14396
- Published electronically: March 5, 2019
- PDF | Request permission
Abstract:
Let $F_n$ denote the Fermat curve given by $x^n+y^n=z^n$ and let $\mu _n$ denote the Galois module of $n$th roots of unity. It is known that the integral homology group $H_1(F_n,\mathbb {Z})$ is a cyclic $\mathbb {Z}[\mu _n\times \mu _n]$ module. In this paper, we prove this result using modular symbols and the modular description of Fermat curves; moreover we find a basis for the integral homology group $H_1(F_n,\mathbb {Z})$. We also construct a family of Fermat curves using the Fermat surface and compute its monodromy.References
- Greg W. Anderson, Torsion points on Fermat Jacobians, roots of circular units and relative singular homology, Duke Math. J. 54 (1987), no. 2, 501–561. MR 899404, DOI 10.1215/S0012-7094-87-05422-6
- G. V. Belyĭ, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 267–276, 479 (Russian). MR 534593
- K. Chandrasekharan, Elliptic functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR 808396, DOI 10.1007/978-3-642-52244-4
- James F. Davis and Paul Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics, vol. 35, American Mathematical Society, Providence, RI, 2001. MR 1841974, DOI 10.1090/gsm/035
- Rachel Davis, Rachel Pries, Vesna Stojanoska, and Kirsten Wickelgren, Galois action on the homology of Fermat curves, Directions in number theory, Assoc. Women Math. Ser., vol. 3, Springer, [Cham], 2016, pp. 57–86. MR 3596577, DOI 10.1007/978-3-319-30976-7_{3}
- Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Séminaire Bourbaki, Vol. 1, Soc. Math. France, Paris, 1995, pp. Exp. No. 24, 153–168 (French). MR 1605161
- Benedict H. Gross, On the periods of abelian integrals and a formula of Chowla and Selberg, Invent. Math. 45 (1978), no. 2, 193–211. With an appendix by David E. Rohrlich. MR 480542, DOI 10.1007/BF01390273
- M. A. Kenku, Rational $2^{n}$-torsion points on elliptic curves defined over quadratic fields, J. London Math. Soc. (2) 11 (1975), no. 1, 93–98. MR 379508, DOI 10.1112/jlms/s2-11.1.93
- K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751–798. MR 187255, DOI 10.2307/2373157
- K. Kodaira, On the structure of compact complex analytic surfaces. II, Amer. J. Math. 88 (1966), 682–721. MR 205280, DOI 10.2307/2373150
- Chong-Hai Lim, Endomorphisms of Jacobian varieties of Fermat curves, Compositio Math. 80 (1991), no. 1, 85–110. MR 1127061
- Ling Long, Finite index subgroups of the modular group and their modular forms, arXiv:0707.3315, 2007.
- Ju. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66 (Russian). MR 0314846
- Rick Miranda, The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica. [Doctorate in Mathematical Research], ETS Editrice, Pisa, 1989. MR 1078016
- David E. Rohrlich, Points at infinity on the Fermat curves, Invent. Math. 39 (1977), no. 2, 95–127. MR 441978, DOI 10.1007/BF01390104
- William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048, DOI 10.1090/gsm/079
- Pavlos Tzermias, The group of automorphisms of the Fermat curve, J. Number Theory 53 (1995), no. 1, 173–178. MR 1344839, DOI 10.1006/jnth.1995.1085
Bibliographic Information
- Özlem Ejder
- Affiliation: Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523
- Email: ejder@math.colostate.edu
- Received by editor(s): March 20, 2018
- Received by editor(s) in revised form: August 31, 2018, and September 13, 2018
- Published electronically: March 5, 2019
- Communicated by: Rachel Pries
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 2305-2319
- MSC (2010): Primary 11F23, 14D05, 11Gxx, 97F60
- DOI: https://doi.org/10.1090/proc/14396
- MathSciNet review: 3951413