On a class of non-Hermitian matrices with positive definite Schur complements
HTML articles powered by AMS MathViewer
- by Thomas Berger, Juan Giribet, Francisco Martínez Pería and Carsten Trunk
- Proc. Amer. Math. Soc. 147 (2019), 2375-2388
- DOI: https://doi.org/10.1090/proc/14412
- Published electronically: March 7, 2019
- PDF | Request permission
Abstract:
Given Hermitian matrices $A\in \mathbb {C}^{n\times n}$ and $D\in \mathbb {C}^{m\times m}$, and $\kappa >0$, we characterize under which conditions there exists a matrix $K\in \mathbb {C}^{n\times m}$ with $\|K\|<\kappa$ such that the non-Hermitian block-matrix \begin{equation*}{\left [\begin {array}{cc} {A}&{-AK}\\ {K^*A} & {D} \end{array} \right ]} \end{equation*} has a positive (semi)definite Schur complement with respect to its submatrix $A$. Additionally, we show that $K$ can be chosen such that diagonalizability of the block-matrix is guaranteed and we compute its spectrum. Moreover, we show a connection to the recently developed frame theory for Krein spaces.References
- A. C. Aitken, Studies in practical mathematics, I: The evaluation, with applications, of a certain triple product matrix, Proc. Roy. Soc. Edinburgh 57 (1937), 269–304.
- Arthur Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math. 17 (1969), 434–440. MR 245582, DOI 10.1137/0117041
- T. Banachiewicz, Zur Berechnung der Determinanten, wie auch der Inversen, und zur darauf basierten Auflösung der Systeme linearer Gleichungen (German), Acta Astronomica Serie C 3 (1937), 41–67.
- Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662, DOI 10.1007/978-1-4612-0653-8
- Peter G. Casazza and Gitta Kutyniok (eds.), Finite frames, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, New York, 2013. Theory and applications. MR 2964005, DOI 10.1007/978-0-8176-8373-3
- Peter G. Casazza and Manuel T. Leon, Existence and construction of finite frames with a given frame operator, Int. J. Pure Appl. Math. 63 (2010), no. 2, 149–157. MR 2683591
- Juan Giribet, Matthias Langer, Leslie Leben, Alejandra Maestripieri, Francisco Martínez Pería, and Carsten Trunk, Spectrum of $J$-frame operators, Opuscula Math. 38 (2018), no. 5, 623–649. MR 3818590, DOI 10.7494/opmath.2018.38.5.623
- J. I. Giribet, A. Maestripieri, F. Martínez Pería, and P. G. Massey, On frames for Krein spaces, J. Math. Anal. Appl. 393 (2012), no. 1, 122–137. MR 2921654, DOI 10.1016/j.jmaa.2012.03.040
- Israel Gohberg, Peter Lancaster, and Leiba Rodman, Indefinite linear algebra and applications, Birkhäuser Verlag, Basel, 2005. MR 2186302
- Louis Guttman, Enlargement methods for computing the inverse matrix, Ann. Math. Statistics 17 (1946), 336–343. MR 17578, DOI 10.1214/aoms/1177730946
- E. V. Haynsworth, On the Schur complement, Basel Mathematical Notes #BMN 20, 1968.
- Emilie V. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl. 1 (1968), no. 1, 73–81. MR 223392, DOI 10.1016/0024-3795(68)90050-5
- Emilie V. Haynsworth and Alexander M. Ostrowski, On the inertia of some classes of partitioned matrices, Linear Algebra Appl. 1 (1968), 299–316. MR 231838, DOI 10.1016/0024-3795(68)90009-8
- Roger A. Horn and Charles R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013. MR 2978290
- Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991. MR 1091716, DOI 10.1017/CBO9780511840371
- J. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205–232 (German). MR 1580948, DOI 10.1515/crll.1917.147.205
- J. J. Sylvester, On the relation between the minor determinants of linearly equivalent quadratic functions, London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Fourth Series 1 (1851), 295–305.
- Fuzhen Zhang (ed.), The Schur complement and its applications, Numerical Methods and Algorithms, vol. 4, Springer-Verlag, New York, 2005. MR 2160825, DOI 10.1007/b105056
Bibliographic Information
- Thomas Berger
- Affiliation: Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
- MR Author ID: 977628
- Email: thomas.berger@math.upb.de
- Juan Giribet
- Affiliation: Departamento de Ingeniería Electrónica y Matemática, Universidad de Buenos Aires and Instituto Argentino de Matemática “Alberto P. Calderón” (CONICET), Saavedra 15 (1083) Buenos Aires, Argentina
- MR Author ID: 836281
- Email: jgiribet@fi.uba.ar
- Francisco Martínez Pería
- Affiliation: Centro de Matemática de La Plata (CeMaLP) – FCE-UNLP, La Plata, Argentina – and – Instituto Argentino de Matemática “Alberto P. Calderón” (CONICET), Saavedra 15 (1083) Buenos Aires, Argentina
- Email: francisco@mate.unlp.edu.ar
- Carsten Trunk
- Affiliation: Institut für Mathematik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany – and – Instituto Argentino de Matemática “Alberto P. Calderón” (CONICET), Saavedra 15 (1083) Buenos Aires, Argentina
- MR Author ID: 700912
- Email: carsten.trunk@tu-ilmenau.de
- Received by editor(s): July 17, 2018
- Received by editor(s) in revised form: September 24, 2018, September 25, 2018, and October 1, 2018
- Published electronically: March 7, 2019
- Communicated by: Stephan Garcia
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 2375-2388
- MSC (2010): Primary 15A83; Secondary 15A23, 15B48
- DOI: https://doi.org/10.1090/proc/14412
- MathSciNet review: 3951418