A characterization of words of linear complexity
HTML articles powered by AMS MathViewer
- by Julien Cassaigne, Anna E. Frid, Svetlana Puzynina and Luca Q. Zamboni
- Proc. Amer. Math. Soc. 147 (2019), 3103-3115
- DOI: https://doi.org/10.1090/proc/14440
- Published electronically: April 3, 2019
- PDF | Request permission
Abstract:
Given an infinite word $x=x_0x_1x_2\cdots \in \mathbb {A}^\mathbb {N}$ over some finite alphabet $\mathbb {A},$ the factor complexity $p_x(n)$ counts the number of distinct factors of $x$ of each given length $n,$ i.e., the number of distinct blocks $x_ix_{i+1}\cdots x_{i+n-1}\in \mathbb {A}^n$ occurring in $x.$ The factor complexity provides a useful measure of the extent of randomness of $x$: periodic words have bounded factor complexity while digit expansions of normal numbers have maximal complexity. In this paper we obtain a new characterization of infinite words $x$ of sublinear complexity, namely we show that $p_x(n)=O(n)$ if and only if there exists a set $S\subseteq \mathbb {A}^*$ of bounded complexity (meaning $\limsup p_S(n)<+\infty )$ such that each factor $w$ of $x$ is a concatenation of two elements of $S,$ i.e., $w=uv$ with $u,v \in S.$ In the process we introduce the notions of marker words and marker sets which are both new and may be of independent interest. Marker sets defined by right special factors constitute the key tool needed to split each factor of an infinite word of linear complexity into two pieces.References
- Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, Cambridge, 2003. Theory, applications, generalizations. MR 1997038, DOI 10.1017/CBO9780511546563
- V. I. Arnol′d, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 91–192 (Russian). MR 0170705
- P. Arnoux, Sturmian sequences, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., vol. 1794, Springer, Berlin, 2002, pp. 143–198. MR 1970391, DOI 10.1007/3-540-45714-3_{6}
- Srečko Brlek, Enumeration of factors in the Thue-Morse word, Discrete Appl. Math. 24 (1989), no. 1-3, 83–96. First Montreal Conference on Combinatorics and Computer Science, 1987. MR 1011264, DOI 10.1016/0166-218X(92)90274-E
- Julien Cassaigne, Special factors of sequences with linear subword complexity, Developments in language theory, II (Magdeburg, 1995) World Sci. Publ., River Edge, NJ, 1996, pp. 25–34. MR 1466182
- Julien Cassaigne, Anna E. Frid, Svetlana Puzynina, and Luca Q. Zamboni, Subword complexity and decomposition of the set of factors, Mathematical foundations of computer science 2014. Part I, Lecture Notes in Comput. Sci., vol. 8634, Springer, Heidelberg, 2014, pp. 147–158. MR 3253050, DOI 10.1007/978-3-662-44522-8_{1}3
- Julien Cassaigne and François Nicolas, Factor complexity, Combinatorics, automata and number theory, Encyclopedia Math. Appl., vol. 135, Cambridge Univ. Press, Cambridge, 2010, pp. 163–247. MR 2759107
- Aldo de Luca and Stefano Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theoret. Comput. Sci. 63 (1989), no. 3, 333–348. MR 993769, DOI 10.1016/0304-3975(89)90013-3
- A. Ehrenfeucht, K. P. Lee, and G. Rozenberg, Subword complexities of various classes of deterministic developmental languages without interactions, Theoret. Comput. Sci. 1 (1975), no. 1, 59–75. MR 388861, DOI 10.1016/0304-3975(75)90012-2
- Amy Glen and Jacques Justin, Episturmian words: a survey, Theor. Inform. Appl. 43 (2009), no. 3, 403–442. MR 2541129, DOI 10.1051/ita/2009003
- Julien Leroy, Some improvements of the $S$-adic conjecture, Adv. in Appl. Math. 48 (2012), no. 1, 79–98. MR 2845508, DOI 10.1016/j.aam.2011.03.005
- M. Lothaire, Combinatorics on words, Addison-Wesley Publishing Co., Reading, Mass., 1983.
- M. Lothaire, Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1997. With a foreword by Roger Lyndon and a preface by Dominique Perrin; Corrected reprint of the 1983 original, with a new preface by Perrin. MR 1475463, DOI 10.1017/CBO9780511566097
- M. Lothaire, Applied combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 105, Cambridge University Press, Cambridge, 2005. A collective work by Jean Berstel, Dominique Perrin, Maxime Crochemore, Eric Laporte, Mehryar Mohri, Nadia Pisanti, Marie-France Sagot, Gesine Reinert, Sophie Schbath, Michael Waterman, Philippe Jacquet, Wojciech Szpankowski, Dominique Poulalhon, Gilles Schaeffer, Roman Kolpakov, Gregory Koucherov, Jean-Paul Allouche and Valérie Berthé; With a preface by Berstel and Perrin. MR 2165687, DOI 10.1017/CBO9781107341005
- Marston Morse and Gustav A. Hedlund, Symbolic Dynamics, Amer. J. Math. 60 (1938), no. 4, 815–866. MR 1507944, DOI 10.2307/2371264
- Marston Morse and Gustav A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1–42. MR 745, DOI 10.2307/2371431
- Jean-Jacques Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes itérés, Automata, languages and programming (Antwerp, 1984) Lecture Notes in Comput. Sci., vol. 172, Springer, Berlin, 1984, pp. 380–389 (French, with English summary). MR 784265, DOI 10.1007/3-540-13345-3_{3}4
- Martine Queffélec, Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 1987. MR 924156, DOI 10.1007/BFb0081890
- Günter Rote, Sequences with subword complexity $2n$, J. Number Theory 46 (1994), no. 2, 196–213. MR 1269252, DOI 10.1006/jnth.1994.1012
- A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat-Nat. Kl. 7 (1906), pp. 1–22.
- A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat-Nat. Kl. 1 (1912), pp. 1–67.
Bibliographic Information
- Julien Cassaigne
- Affiliation: CNRS, Aix Marseille University, Centrale Marseille, I2M, Marseille, France
- MR Author ID: 338907
- Email: julien.cassaigne@math.cnrs.fr
- Anna E. Frid
- Affiliation: CNRS, Aix Marseille University, Centrale Marseille, I2M, Marseille, France
- Email: anna.e.frid@gmail.com
- Svetlana Puzynina
- Affiliation: Saint Petersburg State University and Sobolev Institute of Mathematics, Novosibirsk, Russia
- MR Author ID: 733916
- Email: s.puzynina@gmail.com
- Luca Q. Zamboni
- Affiliation: Institut Camille Jordan, Université Lyon 1, France
- MR Author ID: 289645
- Email: zamboni@math.univ-lyon1.fr
- Received by editor(s): March 30, 2018
- Received by editor(s) in revised form: September 3, 2018
- Published electronically: April 3, 2019
- Additional Notes: The third author was partially supported by Russian Foundation of Basic Research (grant 18-31-00118).
- Communicated by: Nimish Shah
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 3103-3115
- MSC (2010): Primary 68R15; Secondary 37B10
- DOI: https://doi.org/10.1090/proc/14440
- MathSciNet review: 3973910