Norming subspaces of Banach spaces
HTML articles powered by AMS MathViewer
- by V. P. Fonf, S. Lajara, S. Troyanski and C. Zanco
- Proc. Amer. Math. Soc. 147 (2019), 3039-3045
- DOI: https://doi.org/10.1090/proc/14442
- Published electronically: March 26, 2019
- PDF | Request permission
Abstract:
We show that if $X$ is a closed subspace of a Banach space $E$ and $Z$ is a closed subspace of $E^*$ such that $Z$ is norming for $X$ and $X$ is total over $Z$ (as well as $X$ is norming for $Z$ and $Z$ is total over $X$), then $X$ and the preannihilator of $Z$ are complemented in $E$ whenever $Z$ is $w^*$-closed or $X$ is reflexive.References
- Spiros A. Argyros and Andreas Tolias, Methods in the theory of hereditarily indecomposable Banach spaces, Mem. Amer. Math. Soc. 170 (2004), no. 806, vi+114. MR 2053392, DOI 10.1090/memo/0806
- Stefan Banach, Théorie des opérations linéaires, Éditions Jacques Gabay, Sceaux, 1993 (French). Reprint of the 1932 original. MR 1357166
- William J. Davis, David W. Dean, and Bor Luh Lin, Bibasic sequences and norming basic sequences, Trans. Amer. Math. Soc. 176 (1973), 89–102. MR 313763, DOI 10.1090/S0002-9947-1973-0313763-9
- William J. Davis and Joram Lindenstrauss, On total nonnorming subspaces, Proc. Amer. Math. Soc. 31 (1972), 109–111. MR 288560, DOI 10.1090/S0002-9939-1972-0288560-8
- Joe Diestel, A survey of results related to the Dunford-Pettis property, Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, N.C., 1979) Contemp. Math., vol. 2, Amer. Math. Soc., Providence, R.I., 1980, pp. 15–60. MR 621850
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Václav Zizler, Banach space theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011. The basis for linear and nonlinear analysis. MR 2766381, DOI 10.1007/978-1-4419-7515-7
- W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851–874. MR 1201238, DOI 10.1090/S0894-0347-1993-1201238-0
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
Bibliographic Information
- V. P. Fonf
- Affiliation: Department of Mathematics, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
- MR Author ID: 190586
- Email: fonf@math.bgu.ac.il
- S. Lajara
- Affiliation: Departamento de Matemáticas, Universidad de Castilla-La Mancha, Escuela de Ingenieros Industriales, 02071 Albacete, Spain
- MR Author ID: 739008
- Email: sebastian.lajara@uclm.es
- S. Troyanski
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain; and Institute of Mathematics and Informatics, Bulgarian Academy of Science, bl. 8, acad. G. Bonchev str., 1113 Sofia, Bulgaria
- MR Author ID: 174580
- Email: stroya@um.es
- C. Zanco
- Affiliation: Dipartimento di Matematica, Università degli Studi, Via C. Saldini, 50, 20133 Milano MI, Italy
- MR Author ID: 186465
- Email: clemente.zanco@unimi.it
- Received by editor(s): April 24, 2018
- Received by editor(s) in revised form: September 10, 2018, September 28, 2018, and October 15, 2018
- Published electronically: March 26, 2019
- Additional Notes: The first and fourth authors were partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) of Italy.
The second author was supported by MICINN projects MTM2014-54182-P and MTM2015-65825-P (Spain), by MTM2017-86182-P (AEI/FEDER, UE) and by the Fundación Séneca (Agencia de Ciencia y Tecnología de la Región de Murcia) under project 19275/PI/14.
The third author was supported by MICINN project MTM2014-54182-P (Spain), by MTM2017-86182-P (AEI/FEDER, UE), by the Fundación Séneca (Agencia de Ciencia y Tecnología de la Región de Murcia) under project 19275/PI/14 and by the Bulgarian National Scientific Fund. DFNI-I02/10, 2015. - Communicated by: Stephen Dilworth
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 3039-3045
- MSC (2010): Primary 46B20, 46B10; Secondary 46B15
- DOI: https://doi.org/10.1090/proc/14442
- MathSciNet review: 3973904
Dedicated: Dedicated to the memory of Professor Joseph Diestel