Biorthogonal rational functions of $R_{II}$-type
HTML articles powered by AMS MathViewer
- by Kiran Kumar Behera and A. Swaminathan
- Proc. Amer. Math. Soc. 147 (2019), 3061-3073
- DOI: https://doi.org/10.1090/proc/14443
- Published electronically: March 15, 2019
- PDF | Request permission
Abstract:
In this work, a sequence of orthonormal rational functions leading to recurrence relations of $R_{II}$-type is constructed. This sequence is proved to be biorthogonal to another sequence of rational functions as well. Two illustrations of such recurrence relations of $R_{II}$-type, one through the associated linear pencil matrix leading to the -1 little Jacobi polynomials and the other through the bilinear transformation yielding the Bannai-Ito polynomials, which are orthogonal on the real line are exhibited.References
- R. Askey, Discussion of Szegő’s paper “Beiträge zur Theorie der Toeplitzschen Formen”, Gábor Szegő: Collected papers. Vol. 1, Birkhäuser, Boston, Mass., 1982, pp. 303–305. Edited by Richard Askey.
- Bernhard Beckermann, Maxim Derevyagin, and Alexei Zhedanov, The linear pencil approach to rational interpolation, J. Approx. Theory 162 (2010), no. 6, 1322–1346. MR 2643732, DOI 10.1016/j.jat.2010.02.004
- Hendrik De Bie, Vincent X. Genest, and Luc Vinet, The $\Bbb {Z}_2^n$ Dirac-Dunkl operator and a higher rank Bannai-Ito algebra, Adv. Math. 303 (2016), 390–414. MR 3552530, DOI 10.1016/j.aim.2016.08.007
- Adhemar Bultheel and Maria-José Cantero, A matricial computation of rational quadrature formulas on the unit circle, Numer. Algorithms 52 (2009), no. 1, 47–68. MR 2533994, DOI 10.1007/s11075-008-9257-9
- Adhemar Bultheel, Ruyman Cruz-Barroso, and Andreas Lasarow, Orthogonal rational functions on the unit circle with prescribed poles not on the unit circle, SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), Paper No. 090, 49. MR 3731406, DOI 10.3842/SIGMA.2017.090
- A. Bultheel, P. González-Vera, E. Hendriksen, and O. Njåstad, Orthogonal rational functions with poles on the unit circle, J. Math. Anal. Appl. 182 (1994), no. 1, 221–243. MR 1265893, DOI 10.1006/jmaa.1994.1077
- Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Njåstad, Orthogonal rational functions, Cambridge Monographs on Applied and Computational Mathematics, vol. 5, Cambridge University Press, Cambridge, 1999. MR 1676258, DOI 10.1017/CBO9780511530050
- T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR 0481884
- Karl Deckers, María José Cantero, Leandro Moral, and Luis Velázquez, An extension of the associated rational functions on the unit circle, J. Approx. Theory 163 (2011), no. 4, 524–546. MR 2775144, DOI 10.1016/j.jat.2011.01.002
- Karl Deckers and Doron S. Lubinsky, How poles of orthogonal rational functions affect their Christoffel functions, J. Approx. Theory 164 (2012), no. 9, 1184–1199. MR 2948560, DOI 10.1016/j.jat.2012.05.007
- Maxim Derevyagin, Satoshi Tsujimoto, Luc Vinet, and Alexei Zhedanov, Bannai-Ito polynomials and dressing chains, Proc. Amer. Math. Soc. 142 (2014), no. 12, 4191–4206. MR 3266989, DOI 10.1090/S0002-9939-2014-12165-4
- Maxim Derevyagin, Luc Vinet, and Alexei Zhedanov, CMV matrices and little and big $-1$ Jacobi polynomials, Constr. Approx. 36 (2012), no. 3, 513–535. MR 2996442, DOI 10.1007/s00365-012-9164-0
- Maxim S. Derevyagin and Alexei S. Zhedanov, An operator approach to multipoint Padé approximations, J. Approx. Theory 157 (2009), no. 1, 70–88. MR 2500154, DOI 10.1016/j.jat.2008.07.002
- Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2009. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey; Reprint of the 2005 original. MR 2542683
- Mourad E. H. Ismail and David R. Masson, Generalized orthogonality and continued fractions, J. Approx. Theory 83 (1995), no. 1, 1–40. MR 1354960, DOI 10.1006/jath.1995.1106
- Mourad E. H. Ismail and Mizan Rahman, Diophantine properties of orthogonal polynomials and rational functions, Proc. Amer. Math. Soc. 145 (2017), no. 6, 2427–2440. MR 3626501, DOI 10.1090/proc/12355
- M. E. H. Ismail and A. Sri Ranga, $R_{II}$ type recurrence relations, generalized eigenvalue problem and orthogonal polynomials on the unit circle, Linear Algebra Appl. 562 (2019), 63–90.
- Mourad E. H. Ismail and Dennis Stanton, Expansions in the Askey-Wilson polynomials, J. Math. Anal. Appl. 424 (2015), no. 1, 664–674. MR 3286586, DOI 10.1016/j.jmaa.2014.11.048
- Mourad E. H. Ismail and James A. Wilson, Asymptotic and generating relations for the $q$-Jacobi and $_{4}\varphi _{3}$ polynomials, J. Approx. Theory 36 (1982), no. 1, 43–54. MR 673855, DOI 10.1016/0021-9045(82)90069-7
- Joseph D. E. Konhauser, Some properties of biothogonal polynomials, J. Math. Anal. Appl. 11 (1965), 242–260. MR 185167, DOI 10.1016/0022-247X(65)90085-5
- Xin Li, Regularity of orthogonal rational functions with poles on the unit circle, J. Comput. Appl. Math. 105 (1999), no. 1-2, 371–383. Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997). MR 1690604, DOI 10.1016/S0377-0427(99)00045-X
- A. Sri Ranga, Szegő polynomials from hypergeometric functions, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4259–4270. MR 2680052, DOI 10.1090/S0002-9939-2010-10592-0
- Hjalmar Rosengren, Rahman’s biorthogonal rational functions and superconformal indices, Constr. Approx. 47 (2018), no. 3, 529–552. MR 3795203, DOI 10.1007/s00365-017-9393-3
- Vyacheslav Spiridonov and Alexei Zhedanov, Spectral transformation chains and some new biorthogonal rational functions, Comm. Math. Phys. 210 (2000), no. 1, 49–83. MR 1748170, DOI 10.1007/s002200050772
- V. P. Spiridonov and A. S. Zhedanov, Generalized eigenvalue problem and a new family of rational functions biorthogonal on elliptic grids, Special functions 2000: current perspective and future directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., vol. 30, Kluwer Acad. Publ., Dordrecht, 2001, pp. 365–388. MR 2006295, DOI 10.1007/978-94-010-0818-1_{1}4
- Satoshi Tsujimoto, Luc Vinet, and Alexei Zhedanov, Dunkl shift operators and Bannai-Ito polynomials, Adv. Math. 229 (2012), no. 4, 2123–2158. MR 2880217, DOI 10.1016/j.aim.2011.12.020
- Luis Velázquez, Spectral methods for orthogonal rational functions, J. Funct. Anal. 254 (2008), no. 4, 954–986. MR 2381200, DOI 10.1016/j.jfa.2007.11.004
- Luc Vinet and Alexei Zhedanov, A ‘missing’ family of classical orthogonal polynomials, J. Phys. A 44 (2011), no. 8, 085201, 16. MR 2770369, DOI 10.1088/1751-8113/44/8/085201
- Luc Vinet and Alexei Zhedanov, A limit $q=-1$ for the big $q$-Jacobi polynomials, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5491–5507. MR 2931336, DOI 10.1090/S0002-9947-2012-05539-5
- Alexei Zhedanov, Biorthogonal rational functions and the generalized eigenvalue problem, J. Approx. Theory 101 (1999), no. 2, 303–329. MR 1726460, DOI 10.1006/jath.1999.3339
Bibliographic Information
- Kiran Kumar Behera
- Affiliation: Department of Mathematics, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
- Email: krn.behera@gmail.com
- A. Swaminathan
- Affiliation: Department of Mathematics, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
- MR Author ID: 612150
- Email: mathswami@gmail.com, swamifma@iitr.ac.in
- Received by editor(s): May 8, 2018
- Received by editor(s) in revised form: September 13, 2018, and October 20, 2018
- Published electronically: March 15, 2019
- Communicated by: Mourad Ismail
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 3061-3073
- MSC (2010): Primary 41A20, 42C05, 15A18
- DOI: https://doi.org/10.1090/proc/14443
- MathSciNet review: 3973907