The multidimensional truncated moment problem: Gaussian and log-normal mixtures, their Carathéodory numbers, and set of atoms
HTML articles powered by AMS MathViewer
- by Philipp J. di Dio
- Proc. Amer. Math. Soc. 147 (2019), 3021-3038
- DOI: https://doi.org/10.1090/proc/14499
- Published electronically: March 21, 2019
- PDF | Request permission
Abstract:
We study truncated moment sequences of distribution mixtures, especially from Gaussian and log-normal distributions and their Carathéodory numbers. For $\mathsf {A} = \{a_1,\dots ,a_m\}$ continuous (sufficiently differentiable) functions on $\mathbb {R}^n$ we give a general upper bound of $m-1$ and a general lower bound of $\left \lceil \frac {2m}{(n+1)(n+2)}\right \rceil$. For polynomials of degree at most $d$ in $n$ variables we find that the number of Gaussian and log-normal mixtures is bounded by the Carathéodory numbers in [J. Math. Anal. Appl. 461 (2018), pp. 1606–1638]. Therefore, for univariate polynomials $\{1,x,\dots ,x^d\}$ at most $\left \lceil \frac {d+1}{2}\right \rceil$ distributions are needed. For bivariate polynomials of degree at most $2d-1$ we find that $\frac {3d(d-1)}{2}+1$ Gaussian distributions are sufficient. We also treat polynomial systems with gaps and find, e.g., that for $\{1,x^2,x^3,x^5,x^6\}$ three Gaussian distributions are enough for almost all truncated moment sequences. For log-normal distributions the number is bounded by half of the moment number. We give an example of continuous functions where more Gaussian distributions are needed than Dirac delta measures. We show that any inner truncated moment sequence has a mixture which contains any given distribution.References
- C. Améndola, N. Bliss, I. Burke, C. R. Gibbons, M. Helmer, S. Hoşten, E. D. Nash, J. I. Rodriguez, and D. Simolkin, The maximum likelihood degree of toric varieties, arXiv:1703.02251v2, (2017).
- Carlos Améndola, Jean-Charles Faugère, and Bernd Sturmfels, Moment varieties of Gaussian mixtures, J. Algebr. Stat. 7 (2016), no. 1, 14–28. MR 3529332, DOI 10.18409/jas.v7i1.42
- N. I. Aheizer and M. Krein, Some questions in the theory of moments, Translations of Mathematical Monographs, Vol. 2, American Mathematical Society, Providence, R.I., 1962. Translated by W. Fleming and D. Prill. MR 0167806
- N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. Translated by N. Kemmer. MR 0184042
- C. Améndola, K. Ranestad, and B. Sturmfels, Algebraic identifiability of gaussian mixtures, arXiv:1612.01129v2, (2017).
- Fischer Black and Myron Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), no. 3, 637–654. MR 3363443, DOI 10.1086/260062
- Raúl E. Curto and Lawrence A. Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Mem. Amer. Math. Soc. 136 (1998), no. 648, x+56. MR 1445490, DOI 10.1090/memo/0648
- Raúl E. Curto and Lawrence A. Fialkow, Solution of the truncated moment problem for flat data, Mem. Amer. Math. Soc., vol. 119, American Mathematical Society, Providence, Rhode Island, 1996.
- Raúl E. Curto and Lawrence A. Fialkow, The truncated complex $K$-moment problem, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2825–2855. MR 1661305, DOI 10.1090/S0002-9947-00-02472-7
- Raúl E. Curto and Lawrence A. Fialkow, Truncated $K$-moment problems in several variables, J. Operator Theory 54 (2005), no. 1, 189–226. MR 2168867
- Raúl E. Curto and Lawrence A. Fialkow, Recursively determined representing measures for bivariate truncated moment sequences, J. Operator Theory 70 (2013), no. 2, 401–436. MR 3138363, DOI 10.7900/jot.2011sep06.1943
- Philipp J. di Dio and Konrad Schmüdgen, The multidimensional truncated moment problem: atoms, determinacy, and core variety, J. Funct. Anal. 274 (2018), no. 11, 3124–3148. MR 3782989, DOI 10.1016/j.jfa.2017.11.013
- Philipp J. di Dio and Konrad Schmüdgen, The multidimensional truncated moment problem: Carathéodory numbers, J. Math. Anal. Appl. 461 (2018), no. 2, 1606–1638. MR 3765506, DOI 10.1016/j.jmaa.2017.12.021
- Lawrence A. Fialkow, The core variety of a multisequence in the truncated moment problem, J. Math. Anal. Appl. 456 (2017), no. 2, 946–969. MR 3688460, DOI 10.1016/j.jmaa.2017.07.041
- Lawrence Fialkow and Jiawang Nie, Positivity of Riesz functionals and solutions of quadratic and quartic moment problems, J. Funct. Anal. 258 (2010), no. 1, 328–356. MR 2557966, DOI 10.1016/j.jfa.2009.09.015
- Lawrence Fialkow and Srdjan Petrovic, A moment matrix approach to multivariable cubature, Integral Equations Operator Theory 52 (2005), no. 1, 85–124. MR 2138699, DOI 10.1007/s00020-003-1334-9
- Gerd Grubb, Distributions and operators, Graduate Texts in Mathematics, vol. 252, Springer, New York, 2009. MR 2453959
- M. Infusino, T. Kuna, J. L. Lebowitz, and E. R. Speer, The truncated moment problem on $\Bbb {N}_0$, J. Math. Anal. Appl. 452 (2017), no. 1, 443–468. MR 3628029, DOI 10.1016/j.jmaa.2017.02.060
- J. H. B. Kemperman, The general moment problem, a geometric approach, Ann. Math. Statist. 39 (1968), 93–122. MR 247645, DOI 10.1214/aoms/1177698508
- M. G. Kreĭn and A. A. Nudel′man, The Markov moment problem and extremal problems, Translations of Mathematical Monographs, Vol. 50, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development; Translated from the Russian by D. Louvish. MR 0458081
- S. Karlin and L. S. Shapley, Geometry of moment spaces, Mem. Amer. Math. Soc. 12 (1953), 93. MR 59329
- Jean Bernard Lasserre, An introduction to polynomial and semi-algebraic optimization, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2015. MR 3469431, DOI 10.1017/CBO9781107447226
- Monique Laurent, Sums of squares, moment matrices and optimization over polynomials, Emerging applications of algebraic geometry, IMA Vol. Math. Appl., vol. 149, Springer, New York, 2009, pp. 157–270. MR 2500468, DOI 10.1007/978-0-387-09686-5_{7}
- Murray Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Monographs, vol. 146, American Mathematical Society, Providence, RI, 2008. MR 2383959, DOI 10.1090/surv/146
- J. Matzke, Mehrdimensionale Momentenprobleme und Positivitätskegel, Ph.D. thesis, University of Leipzig, 1992.
- Robert C. Merton, Theory of rational option pricing, Bell J. Econom. and Management Sci. 4 (1973), 141–183. MR 496534
- Jean-Michel Marin, Kerrie Mengersen, and Christian P. Robert, Bayesian modelling and inference on mixtures of distributions, Bayesian thinking: modeling and computation, Handbook of Statist., vol. 25, Elsevier/North-Holland, Amsterdam, 2005, pp. 459–507. MR 2490536, DOI 10.1016/S0169-7161(05)25016-2
- K. Pearson, Contributions to the mathematical theory of evolution, Phil. Trans. Roy. Soc. London A 185 (1894), 71–110.
- H. Permuter, J. Francos, and I. Jermyn, A study of Gaussian mixture models of color and texture features for image classification and segmentation, Pattern Recognit. 39 (2006), 695–706.
- Mihai Putinar and Konrad Schmüdgen, Multivariate determinateness, Indiana Univ. Math. J. 57 (2008), no. 6, 2931–2968. MR 2483007, DOI 10.1512/iumj.2008.57.3692
- Bruce Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 96 (1992), no. 463, viii+155. MR 1096187, DOI 10.1090/memo/0463
- Hans Richter, Parameterfreie Abschätzung und Realisierung von Erwartungswerten, Bl. Deutsch. Ges. Versicherungsmath. 3 (1957), 147–162 (German). MR 88130
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- W. W. Rogosinski, Moments of non-negative mass, Proc. Roy. Soc. London Ser. A 245 (1958), 1–27. MR 149217, DOI 10.1098/rspa.1958.0062
- Cordian Riener and Markus Schweighofer, Optimization approaches to quadrature: new characterizations of Gaussian quadrature on the line and quadrature with few nodes on plane algebraic curves, on the plane and in higher dimensions, J. Complexity 45 (2018), 22–54. MR 3748596, DOI 10.1016/j.jco.2017.10.002
- Hans Sagan, Space-filling curves, Universitext, Springer-Verlag, New York, 1994. MR 1299533, DOI 10.1007/978-1-4612-0871-6
- Arthur Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883–890. MR 7523, DOI 10.1090/S0002-9904-1942-07811-6
- Konrad Schmüdgen, The $K$-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), no. 2, 203–206. MR 1092173, DOI 10.1007/BF01446568
- Konrad Schmüdgen, On the moment problem of closed semi-algebraic sets, J. Reine Angew. Math. 558 (2003), 225–234. MR 1979186, DOI 10.1515/crll.2003.040
- Konrad Schmüdgen, The multi-dimensional truncated moment problem: maximal masses, Methods Funct. Anal. Topology 21 (2015), no. 3, 266–281. MR 3521697
- Konrad Schmüdgen, The moment problem, Graduate Texts in Mathematics, vol. 277, Springer, Cham, 2017. MR 3729411
- K. Schmüdgen and P. J. di Dio, Truncated Moment Problem: Set of Atoms and Carathéodory Numbers, Oberwolfach Reports 14 (2017), 77–79.
- Barry Simon, The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137 (1998), no. 1, 82–203. MR 1627806, DOI 10.1006/aima.1998.1728
- J. Stoyanov, Moment properties of probability distributions used in stochastic financial models, Recent Advances in Financial Engineering 2014 Proceedings of the TMU Finance Workshop 2014, World Scientific Publishing Co. Pte. Ltd., 2016, pp. 1–27.
- D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical analysis of finite mixture distributions, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 1985. MR 838090
Bibliographic Information
- Philipp J. di Dio
- Affiliation: Mathematisches Institut, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany; Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- MR Author ID: 1254994
- Email: didio@uni-leipzig.de
- Received by editor(s): May 8, 2018
- Received by editor(s) in revised form: July 19, 2018, and October 13, 2018
- Published electronically: March 21, 2019
- Additional Notes: The author was supported by the Deutsche Forschungsgemeinschaft (SCHM1009/6-1).
- Communicated by: David Levin
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 3021-3038
- MSC (2010): Primary 44A60, 14P10
- DOI: https://doi.org/10.1090/proc/14499
- MathSciNet review: 3973903