Uniqueness of minimal energy solutions for a semilinear problem involving the fractional Laplacian
HTML articles powered by AMS MathViewer
- by Julián Fernández Bonder, Analía Silva and Juan Spedaletti
- Proc. Amer. Math. Soc. 147 (2019), 2925-2936
- DOI: https://doi.org/10.1090/proc/14530
- Published electronically: April 9, 2019
- PDF | Request permission
Abstract:
In this paper we study a semilinear problem for the fractional laplacian that is the counterpart of the Neumann problems in the classical setting. We show uniqueness of minimal energy solutions for small domains.References
- Gabriel Acosta and Juan Pablo Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations, SIAM J. Numer. Anal. 55 (2017), no. 2, 472–495. MR 3620141, DOI 10.1137/15M1033952
- Vedat Akgiray and G. Geoffrey Booth, The siable-law model of stock returns, J. Bus. Econom. Stat. 6 (1988), no. 1, 51–57.
- Antonio Ambrosetti and Giovanni Prodi, A primer of nonlinear analysis, Cambridge Studies in Advanced Mathematics, vol. 34, Cambridge University Press, Cambridge, 1995. Corrected reprint of the 1993 original. MR 1336591
- Krzysztof Bogdan, Krzysztof Burdzy, and Zhen-Qing Chen, Censored stable processes, Probab. Theory Related Fields 127 (2003), no. 1, 89–152. MR 2006232, DOI 10.1007/s00440-003-0275-1
- Jean Bourgain, Haim Brezis, and Petru Mironescu, Another look at Sobolev spaces, Optimal control and partial differential equations, IOS, Amsterdam, 2001, pp. 439–455. MR 3586796
- Lorenzo Brasco, Enea Parini, and Marco Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst. 36 (2016), no. 4, 1813–1845. MR 3411543, DOI 10.3934/dcds.2016.36.1813
- Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245–1260. MR 2354493, DOI 10.1080/03605300600987306
- Guoyuan Chen, Singularly perturbed Neumann problem for fractional Schrödinger equations, Sci. China Math. 61 (2018), no. 4, 695–708. MR 3776462, DOI 10.1007/s11425-016-0420-2
- Zhen-Qing Chen, Panki Kim, and Renming Song, Two-sided heat kernel estimates for censored stable-like processes, Probab. Theory Related Fields 146 (2010), no. 3-4, 361–399. MR 2574732, DOI 10.1007/s00440-008-0193-3
- Peter Constantin, Euler equations, Navier-Stokes equations and turbulence, Mathematical foundation of turbulent viscous flows, Lecture Notes in Math., vol. 1871, Springer, Berlin, 2006, pp. 1–43. MR 2196360, DOI 10.1007/11545989_{1}
- Gianni Dal Maso, An introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1201152, DOI 10.1007/978-1-4612-0327-8
- Leandro M. Del Pezzo and Ariel M. Salort, The first non-zero Neumann $p$-fractional eigenvalue, Nonlinear Anal. 118 (2015), 130–143. MR 3325609, DOI 10.1016/j.na.2015.02.006
- Françoise Demengel and Gilbert Demengel, Functional spaces for the theory of elliptic partial differential equations, Universitext, Springer, London; EDP Sciences, Les Ulis, 2012. Translated from the 2007 French original by Reinie Erné. MR 2895178, DOI 10.1007/978-1-4471-2807-6
- Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. MR 2944369, DOI 10.1016/j.bulsci.2011.12.004
- Serena Dipierro, Xavier Ros-Oton, and Enrico Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam. 33 (2017), no. 2, 377–416. MR 3651008, DOI 10.4171/RMI/942
- Qiang Du, Max Gunzburger, R. B. Lehoucq, and Kun Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev. 54 (2012), no. 4, 667–696. MR 3023366, DOI 10.1137/110833294
- A. Cemal Eringen, Nonlocal continuum field theories, Springer-Verlag, New York, 2002. MR 1918950
- J. Fernández Bonder and A. M. Salort, Fractional order Orlicz-Sobolev spaces, arXiv e-prints, 2017.
- Julian Fernández Bonder, Enrique Lami Dozo, and Julio D. Rossi, Symmetry properties for the extremals of the Sobolev trace embedding, Ann. Inst. H. Poincaré C Anal. Non Linéaire 21 (2004), no. 6, 795–805 (English, with English and French summaries). MR 2097031, DOI 10.1016/j.anihpc.2003.09.005
- Julian Fernández Bonder, Julio D. Rossi, and Juan F. Spedaletti, Optimal design problems for the first $p$-fractional eigenvalue with mixed boundary conditions, Adv. Nonlinear Stud. 18 (2018), no. 2, 323–335. MR 3781310, DOI 10.1515/ans-2018-0001
- Julián Fernández Bonder and Juan F. Spedaletti, Some nonlocal optimal design problems, J. Math. Anal. Appl. 459 (2018), no. 2, 906–931. MR 3732563, DOI 10.1016/j.jmaa.2017.11.015
- Giambattista Giacomin and Joel L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits, J. Statist. Phys. 87 (1997), no. 1-2, 37–61. MR 1453735, DOI 10.1007/BF02181479
- Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7 (2008), no. 3, 1005–1028. MR 2480109, DOI 10.1137/070698592
- Nicolas Humphries et al., Environmental context explains Lévy and Brownian movement patterns of marine predators, Nature 465 (2010), 1066–1069.
- Nikolai Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298–305. MR 1755089, DOI 10.1016/S0375-9601(00)00201-2
- S. Z. Levendorskiĭ, Pricing of the American put under Lévy processes, Int. J. Theor. Appl. Finance 7 (2004), no. 3, 303–335. MR 2064019, DOI 10.1142/S0219024904002463
- C.-S. Lin, W.-M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), no. 1, 1–27. MR 929196, DOI 10.1016/0022-0396(88)90147-7
- Erik Lindgren and Peter Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 795–826. MR 3148135, DOI 10.1007/s00526-013-0600-1
- Annalisa Massaccesi and Enrico Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition?, J. Math. Biol. 74 (2017), no. 1-2, 113–147. MR 3590678, DOI 10.1007/s00285-016-1019-z
- Ralf Metzler and Joseph Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77. MR 1809268, DOI 10.1016/S0370-1573(00)00070-3
- Augusto C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations 19 (2004), no. 3, 229–255. MR 2033060, DOI 10.1007/s00526-003-0195-z
- A. M. Reynolds and C. J. Rhodes, The Lévy flight paradigm: Random search patterns and mechanisms, Ecology 90 (2009), no. 4, 877–887.
- Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR 1739520
- Wim Schoutens, Lévy processes in finance: Pricing financial derivatives, Wiley Series in Probability and Statistics, Wiley, New York, 2003.
- Yannick Sire, Juan Luis Vázquez, and Bruno Volzone, Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application, Chinese Ann. Math. Ser. B 38 (2017), no. 2, 661–686. MR 3615510, DOI 10.1007/s11401-017-1089-2
- Pablo Raúl Stinga and Bruno Volzone, Fractional semilinear Neumann problems arising from a fractional Keller-Segel model, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 1009–1042. MR 3385190, DOI 10.1007/s00526-014-0815-9
- Harald Upmeier, Symmetric Banach manifolds and Jordan $C^\ast$-algebras, North-Holland Mathematics Studies, vol. 104, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 96. MR 776786
- Kun Zhou and Qiang Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal. 48 (2010), no. 5, 1759–1780. MR 2733097, DOI 10.1137/090781267
Bibliographic Information
- Julián Fernández Bonder
- Affiliation: Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Instituto de Matemática Santaló (IMAS), CONICET, Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina
- Email: jfbonder@dm.uba.ar
- Analía Silva
- Affiliation: Departamento de Matemática, FCFMyN, Universidad Nacional de San Luis, Instituto de Matemática Aplicada San Luis, IMASL, CONICET, Italia avenue 1556, office 5, San Luis (5700), San Luis, Argentina
- Email: acsilva@unsl.edu.ar
- Juan Spedaletti
- Affiliation: Departamento de Matemática, FCFMyN, Universidad Nacional de San Luis, Instituto de Matemática Aplicada San Luis, IMASL, CONICET, Italia avenue 1556, office 5, San Luis (5700), San Luis, Argentina
- MR Author ID: 1198828
- Email: jfspedaletti@unsl.edu.ar
- Received by editor(s): November 2, 2017
- Received by editor(s) in revised form: September 5, 2018, and September 30, 2018
- Published electronically: April 9, 2019
- Additional Notes: The first and second authors are members of CONICET
This paper was partially supported by grants UBACyT 20020130100283BA, CONICET PIP 11220150100032CO, and ANPCyT PICT 2012-0153 - Communicated by: Catherine Sulem
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 2925-2936
- MSC (2010): Primary 35R11, 35J60
- DOI: https://doi.org/10.1090/proc/14530
- MathSciNet review: 3973895