Remarks on the higher dimensional Suita conjecture
HTML articles powered by AMS MathViewer
- by G. P. Balakumar, Diganta Borah, Prachi Mahajan and Kaushal Verma
- Proc. Amer. Math. Soc. 147 (2019), 3401-3411
- DOI: https://doi.org/10.1090/proc/14421
- Published electronically: May 8, 2019
- PDF | Request permission
Abstract:
To study the analog of Suita’s conjecture for domains $D \subset \mathbb {C}^n$, $n \geq 2$, Błocki introduced the invariant $F^k_D(z)=K_D(z)\lambda \big (I^k_D(z)\big )$, where $K_D(z)$ is the Bergman kernel of $D$ along the diagonal and $\lambda \big (I^k_D(z)\big )$ is the Lebesgue measure of the Kobayashi indicatrix at the point $z$. In this note, we study the behaviour of $F^k_D(z)$ (and other similar invariants using different metrics) on strongly pseudconvex domains and also compute its limiting behaviour explicitly at certain points of decoupled egg domains in $\mathbb {C}^2$.References
- Zbigniew Błocki, Cauchy-Riemann meet Monge-Ampère, Bull. Math. Sci. 4 (2014), no. 3, 433–480. MR 3277882, DOI 10.1007/s13373-014-0058-2
- Zbigniew Blocki, A lower bound for the Bergman kernel and the Bourgain-Milman inequality, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2116, Springer, Cham, 2014, pp. 53–63. MR 3364678, DOI 10.1007/978-3-319-09477-9_{4}
- Zbigniew Błocki and Włodzimierz Zwonek, Estimates for the Bergman kernel and the multidimensional Suita conjecture, New York J. Math. 21 (2015), 151–161. MR 3318425
- Zbigniew Błocki and Włodzimierz Zwonek, On the Suita conjecture for some convex ellipsoids in $\Bbb {C}^2$, Exp. Math. 25 (2016), no. 1, 8–16. MR 3424829, DOI 10.1080/10586458.2014.1002871
- C. K. Cheung and Kang-Tae Kim, Analysis of the Wu metric. I. The case of convex Thullen domains, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1429–1457. MR 1357392, DOI 10.1090/S0002-9947-96-01642-X
- C. K. Cheung and K. T. Kim, Analysis of the Wu metric. II. The case of non-convex Thullen domains, Proc. Amer. Math. Soc. 125 (1997), no. 4, 1131–1142. MR 1363414, DOI 10.1090/S0002-9939-97-03695-2
- John P. D’Angelo, A note on the Bergman kernel, Duke Math. J. 45 (1978), no. 2, 259–265. MR 473231
- John P. D’Angelo, An explicit computation of the Bergman kernel function, J. Geom. Anal. 4 (1994), no. 1, 23–34. MR 1274136, DOI 10.1007/BF02921591
- Ian Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $C^{n}$ with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219–240. MR 372252, DOI 10.1090/S0002-9947-1975-0372252-8
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775
- Nikolai Nikolov, Localization of invariant metrics, Arch. Math. (Basel) 79 (2002), no. 1, 67–73. MR 1923040, DOI 10.1007/s00013-002-8286-1
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, Second extended edition, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter GmbH & Co. KG, Berlin, 2013. MR 3114789, DOI 10.1515/9783110253863
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145, DOI 10.24033/bsmf.1948
- László Lempert, Holomorphic invariants, normal forms, and the moduli space of convex domains, Ann. of Math. (2) 128 (1988), no. 1, 43–78. MR 951507, DOI 10.2307/1971462
- S. I. Pinčuk, Holomorphic inequivalence of certain classes of domains in $\textbf {C}^{n}$, Mat. Sb. (N.S.) 111(153) (1980), no. 1, 67–94, 159 (Russian). MR 560464
- Harish Seshadri and Kaushal Verma, On isometries of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), no. 3, 393–417. MR 2274785
Bibliographic Information
- G. P. Balakumar
- Affiliation: Department of Mathematics, Indian Institute of Technology Palakkad, 678557, India
- Email: gpbalakumar@gmail.com
- Diganta Borah
- Affiliation: Indian Institute of Science Education and Research, Pune 411008, India
- Email: dborah@iiserpune.ac.in
- Prachi Mahajan
- Affiliation: Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- MR Author ID: 971599
- Email: prachi@math.iitb.ac.in
- Kaushal Verma
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India
- MR Author ID: 650937
- Email: kverma@iisc.ac.in
- Received by editor(s): August 29, 2018
- Received by editor(s) in revised form: October 3, 2018
- Published electronically: May 8, 2019
- Additional Notes: The second-named author was partially supported by the DST-INSPIRE grant IFA-13 MA-21.
- Communicated by: Harold P. Boas
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 3401-3411
- MSC (2010): Primary 32F45, 32A07, 32A25
- DOI: https://doi.org/10.1090/proc/14421
- MathSciNet review: 3981118