Characterization of hypersurfaces via the second eigenvalue of the Jacobi operator
HTML articles powered by AMS MathViewer
- by Abraão Mendes
- Proc. Amer. Math. Soc. 147 (2019), 3515-3521
- DOI: https://doi.org/10.1090/proc/14477
- Published electronically: March 21, 2019
- PDF | Request permission
Abstract:
In this work we characterize certain immersed closed hypersurfaces of some ambient manifolds via the second eigenvalue of the Jacobi operator. First, we characterize the Clifford torus as the surface which maximizes the second eigenvalue of the Jacobi operator among all closed immersed orientable surfaces of $\mathbb {S}^3$ with genus bigger than zero. After, we characterize the slices of the warped product $I\times _h\mathbb {S}^n$, under a suitable hypothesis on the warping function $h:I\subset \mathbb {R}\to \mathbb {R}$, as the only hypersurfaces which saturate a certain integral inequality involving the second eigenvalue of the Jacobi operator. As a consequence, we obtain that if $\Sigma$ is a closed immersed hypersurface of $\mathbb {R}\times \mathbb {S}^n$, then the second eigenvalue of the Jacobi operator of $\Sigma$ satisfies $\lambda _2\le n$ and the slices are the only hypersurfaces which satisfy $\lambda _2=n$.References
- Nicholas D. Alikakos, Giorgio Fusco, and Vagelis Stefanopoulos, Critical spectrum and stability of interfaces for a class of reaction-diffusion equations, J. Differential Equations 126 (1996), no. 1, 106–167. MR 1382059, DOI 10.1006/jdeq.1996.0046
- F. J. Almgren Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277–292. MR 200816, DOI 10.2307/1970520
- Simon Brendle, Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 247–269. MR 3090261, DOI 10.1007/s10240-012-0047-5
- Simon Brendle, Embedded minimal tori in $S^3$ and the Lawson conjecture, Acta Math. 211 (2013), no. 2, 177–190. MR 3143888, DOI 10.1007/s11511-013-0101-2
- A. El Soufi and S. Ilias, Une inégalité du type “Reilly” pour les sous-variétés de l’espace hyperbolique, Comment. Math. Helv. 67 (1992), no. 2, 167–181 (French). MR 1161279, DOI 10.1007/BF02566494
- Ahmad El Soufi and Saïd Ilias, Second eigenvalue of Schrödinger operators and mean curvature, Comm. Math. Phys. 208 (2000), no. 3, 761–770. MR 1736334, DOI 10.1007/s002200050009
- Evans M. Harrell II and Michael Loss, On the Laplace operator penalized by mean curvature, Comm. Math. Phys. 195 (1998), no. 3, 643–650. MR 1641019, DOI 10.1007/s002200050406
- Joseph Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1645–A1648 (French). MR 292357
- Peter Li and Shing Tung Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), no. 2, 269–291. MR 674407, DOI 10.1007/BF01399507
- Antonio Ros, One-sided complete stable minimal surfaces, J. Differential Geom. 74 (2006), no. 1, 69–92. MR 2260928
- Rabah Souam, Stable CMC and index one minimal surfaces in conformally flat manifolds, Int. Math. Res. Not. IMRN 13 (2015), 4626–4637. MR 3439087, DOI 10.1093/imrn/rnu077
- Francisco Urbano, Minimal surfaces with low index in the three-dimensional sphere, Proc. Amer. Math. Soc. 108 (1990), no. 4, 989–992. MR 1007516, DOI 10.1090/S0002-9939-1990-1007516-1
Bibliographic Information
- Abraão Mendes
- Affiliation: Instituto de Matemática, Universidade Federal de Alagoas, Maceió, Alagoas, 57072-970, Brazil
- Email: abraao.mendes@im.ufal.br
- Received by editor(s): August 2, 2018
- Received by editor(s) in revised form: November 16, 2018
- Published electronically: March 21, 2019
- Communicated by: Jiaping Wang
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 3515-3521
- MSC (2010): Primary 53C24
- DOI: https://doi.org/10.1090/proc/14477
- MathSciNet review: 3981129