## A remark on constant scalar curvature Kähler metrics on minimal models

HTML articles powered by AMS MathViewer

- by Wangjian Jian, Yalong Shi and Jian Song PDF
- Proc. Amer. Math. Soc.
**147**(2019), 3507-3513 Request permission

## Abstract:

In this short note, we prove the existence of constant scalar curvature Kähler metrics on compact Kähler manifolds with semi-ample canonical bundles.## References

- Claudio Arezzo and Frank Pacard,
*Blowing up and desingularizing constant scalar curvature Kähler manifolds*, Acta Math.**196**(2006), no. 2, 179–228. MR**2275832**, DOI 10.1007/s11511-006-0004-6 - Robert J. Berman and Bo Berndtsson,
*Convexity of the $K$-energy on the space of Kähler metrics and uniqueness of extremal metrics*, J. Amer. Math. Soc.**30**(2017), no. 4, 1165–1196. MR**3671939**, DOI 10.1090/jams/880 - Xiuxiong Chen,
*On the lower bound of the Mabuchi energy and its application*, Internat. Math. Res. Notices**12**(2000), 607–623. MR**1772078**, DOI 10.1155/S1073792800000337 - X. X. Chen,
*A new parabolic flow in Kähler manifolds*, Comm. Anal. Geom.**12**(2004), no. 4, 837–852. MR**2104078**, DOI 10.4310/CAG.2004.v12.n4.a4 - Xiuxiong Chen and Jingrui Cheng,
*The constant scalar curvature Kähler metrics (II)-existence results*, arXiv:1801.00656v1, 2018. - S. K. Donaldson,
*Moment maps and diffeomorphisms*, Asian J. Math.**3**(1999), no. 1, 1–15. Sir Michael Atiyah: a great mathematician of the twentieth century. MR**1701920**, DOI 10.4310/AJM.1999.v3.n1.a1 - Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi,
*Singular Kähler-Einstein metrics*, J. Amer. Math. Soc.**22**(2009), no. 3, 607–639. MR**2505296**, DOI 10.1090/S0894-0347-09-00629-8 - Joel Fine,
*Constant scalar curvature Kähler metrics on fibred complex surfaces*, J. Differential Geom.**68**(2004), no. 3, 397–432. MR**2144537** - Joel Fine,
*Fibrations with constant scalar curvature Kähler metrics and the CM-line bundle*, Math. Res. Lett.**14**(2007), no. 2, 239–247. MR**2318622**, DOI 10.4310/MRL.2007.v14.n2.a7 - Mark Gross and P. M. H. Wilson,
*Large complex structure limits of $K3$ surfaces*, J. Differential Geom.**55**(2000), no. 3, 475–546. MR**1863732** - Wangjian Jian,
*Convergence of scalar curvature of Kähler-Ricci flow on manifolds of positive Kodaira dimension*, arXiv:1805.07884, 2018. - Haozhao Li, Yalong Shi, and Yi Yao,
*A criterion for the properness of the $K$-energy in a general Kähler class*, Math. Ann.**361**(2015), no. 1-2, 135–156. MR**3302615**, DOI 10.1007/s00208-014-1073-z - Julius Ross and Richard Thomas,
*An obstruction to the existence of constant scalar curvature Kähler metrics*, J. Differential Geom.**72**(2006), no. 3, 429–466. MR**2219940** - Jian Song,
*Riemannian geometry of Kähler-Einstein currents*, arXiv:1404.0445, 2014. - Jian Song and Gang Tian,
*Canonical measures and Kähler-Ricci flow*, J. Amer. Math. Soc.**25**(2012), no. 2, 303–353. MR**2869020**, DOI 10.1090/S0894-0347-2011-00717-0 - Jian Song and Gang Tian,
*Bounding scalar curvature for global solutions of the Kähler-Ricci flow*, Amer. J. Math.**138**(2016), no. 3, 683–695. MR**3506382**, DOI 10.1353/ajm.2016.0025 - Jian Song and Ben Weinkove,
*On the convergence and singularities of the $J$-flow with applications to the Mabuchi energy*, Comm. Pure Appl. Math.**61**(2008), no. 2, 210–229. MR**2368374**, DOI 10.1002/cpa.20182 - Jian Song and Ben Weinkove,
*The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type*, Univ. Iagel. Acta Math.**50, [2012 on articles]**(2013), 89–106. MR**3235005** - Gang Tian,
*On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M)>0$*, Invent. Math.**89**(1987), no. 2, 225–246. MR**894378**, DOI 10.1007/BF01389077 - Gang Tian,
*Kähler-Einstein metrics with positive scalar curvature*, Invent. Math.**130**(1997), no. 1, 1–37. MR**1471884**, DOI 10.1007/s002220050176 - Gang Tian,
*Canonical metrics in Kähler geometry*, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. Notes taken by Meike Akveld. MR**1787650**, DOI 10.1007/978-3-0348-8389-4 - Hajime Tsuji,
*Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type*, Math. Ann.**281**(1988), no. 1, 123–133. MR**944606**, DOI 10.1007/BF01449219 - Ben Weinkove,
*On the $J$-flow in higher dimensions and the lower boundedness of the Mabuchi energy*, J. Differential Geom.**73**(2006), no. 2, 351–358. MR**2226957** - Shing Tung Yau,
*On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I*, Comm. Pure Appl. Math.**31**(1978), no. 3, 339–411. MR**480350**, DOI 10.1002/cpa.3160310304

## Additional Information

**Wangjian Jian**- Affiliation: School of Mathematical Sciences, Peking University, Beijing, People’s Republic of China 100871
- Email: 1401110008@pku.edu.cn
**Yalong Shi**- Affiliation: Department of Mathematics, Nanjing University, Nanjing, People’s Republic of China 210093
- Email: shiyl@nju.edu.cn
**Jian Song**- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
- MR Author ID: 746741
- Email: jiansong@math.rutgers.edu
- Received by editor(s): August 31, 2018
- Received by editor(s) in revised form: November 15, 2018
- Published electronically: May 9, 2019
- Additional Notes: The first author was supported in part by China Scholarship Council.

The second author was supported in part by NSFC No.11331001 and the Hwa Ying Foundation at Nanjing University.

The third author was supported in part by National Science Foundation grant DMS-1711439.

The second author is the corresponding author. - Communicated by: Jiaping Wang
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 3507-3513 - MSC (2010): Primary 53C55
- DOI: https://doi.org/10.1090/proc/14496
- MathSciNet review: 3981128