# Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

## Mixed weak estimates of Sawyer type for generalized maximal operatorsHTML articles powered by AMS MathViewer

by Fabio Berra
Proc. Amer. Math. Soc. 147 (2019), 4259-4273 Request permission

## Abstract:

We study mixed weak estimates of Sawyer type for maximal operators associated with the family of Young functions $\Phi (t)=t^r(1+\log ^+t)^{\delta }$, where $r\geq 1$ and $\delta \geq 0$. More precisely, if $u$ and $v^r$ are $A_1$ weights and $w$ is defined as $w=1/\Phi (v^{-1})$, then the estimate $uw\left (\left \{x\in \mathbb {R}^n: \frac {M_\Phi (fv)(x)}{v(x)}>t\right \}\right )\leq C\int _{\mathbb {R}^n}\Phi \left (\frac {|f(x)|v(x)}{t}\right )u(x) dx$ holds for every positive $t$. This extends mixed estimates to a wider class of maximal operators, since when we put $r=1$ and $\delta =0$ we recover a previous result for the classical Hardy-Littlewood maximal operator.

This inequality generalizes the result proved by Sawyer in [Proc. Amer. Math. Soc. 93 (1985), no. 4, pp. 610–614]. Moreover, it includes estimates for some maximal operators related to commutators of Calderón-Zygmund operators.

References
Similar Articles
• Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B20, 42B25
• Retrieve articles in all journals with MSC (2010): 42B20, 42B25
• Fabio Berra
• Affiliation: CONICET and Departamento de Matemática (FIQ-UNL), 3000 Santa Fe, Argentina
• Email: fberra@santafe-conicet.gov.ar
• Received by editor(s): April 6, 2018
• Received by editor(s) in revised form: October 2, 2018
• Published electronically: June 27, 2019
• Additional Notes: The author was supported by CONICET and UNL
• Communicated by: Svitlana Mayboroda
• Journal: Proc. Amer. Math. Soc. 147 (2019), 4259-4273
• MSC (2010): Primary 42B20, 42B25
• DOI: https://doi.org/10.1090/proc/14495
• MathSciNet review: 4002540