On the bilinear Hilbert transform along two polynomials
HTML articles powered by AMS MathViewer
- by Dong Dong
- Proc. Amer. Math. Soc. 147 (2019), 4245-4258
- DOI: https://doi.org/10.1090/proc/14518
- Published electronically: June 27, 2019
- PDF | Request permission
Abstract:
We prove that the bilinear Hilbert transform along two polynomials $B_{P,Q}(f,g)(x)=\int _{\mathbb {R}}f(x-P(t))g(x-Q(t))\frac {dt}{t}$ is bounded from $L^p \times L^q$ to $L^r$ for a large range of $(p,q,r)$, as long as the polynomials $P$ and $Q$ have distinct leading and trailing degrees. The same boundedness property holds for the corresponding bilinear maximal function \[ \mathcal {M}_{P,Q}(f,g)(x)=\sup _{\epsilon >0}\frac {1}{2\epsilon }\int _{-\epsilon }^{\epsilon } |f(x-P(t))g(x-Q(t))|dt.\]References
- Michael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2) 150 (1999), no. 2, 489–577. MR 1726701, DOI 10.2307/121088
- Dong Dong, On a discrete bilinear singular operator, C. R. Math. Acad. Sci. Paris 355 (2017), no. 5, 538–542 (English, with English and French summaries). MR 3650379, DOI 10.1016/j.crma.2017.03.010
- D. Dong, Multilinear operators in harmonic analysis: methods and applications, Thesis (Ph.D.)-University of Illinois at Urbana-Champaign, 2018, http://hdl.handle.net/ 2142/101503
- D. Dong, Full range boundedness of bilinear Hilbert transform along certain polynomials, Math. Inequal. Appl., to appear.
- D. Dong, X. Li, W. Sawin Improved estimates for polynomial Roth type theorems in finite fields, https://arxiv.org/abs/1709.00080, J. Anal. Math., to appear.
- Dong Dong and Xianchang Meng, Discrete bilinear Radon transforms along arithmetic functions with many common values, Bull. Lond. Math. Soc. 50 (2018), no. 1, 132–142. MR 3778550, DOI 10.1112/blms.12127
- Eugene B. Fabes, Singular integrals and partial differential equations of parabolic type, Studia Math. 28 (1966/67), 81–131. MR 213744, DOI 10.4064/sm-28-1-81-131
- Loukas Grafakos and Xiaochun Li, Uniform bounds for the bilinear Hilbert transforms. I, Ann. of Math. (2) 159 (2004), no. 3, 889–933. MR 2113017, DOI 10.4007/annals.2004.159.889
- Jingwei Guo and Lechao Xiao, Bilinear Hilbert transforms associated with plane curves, J. Geom. Anal. 26 (2016), no. 2, 967–995. MR 3472825, DOI 10.1007/s12220-015-9580-z
- Lars Hörmander, Oscillatory integrals and multipliers on $FL^{p}$, Ark. Mat. 11 (1973), 1–11. MR 340924, DOI 10.1007/BF02388505
- Michael Lacey and Christoph Thiele, $L^p$ estimates on the bilinear Hilbert transform for $2<p<\infty$, Ann. of Math. (2) 146 (1997), no. 3, 693–724. MR 1491450, DOI 10.2307/2952458
- Michael Lacey and Christoph Thiele, On Calderón’s conjecture, Ann. of Math. (2) 149 (1999), no. 2, 475–496. MR 1689336, DOI 10.2307/120971
- Xiaochun Li, Uniform bounds for the bilinear Hilbert transforms. II, Rev. Mat. Iberoam. 22 (2006), no. 3, 1069–1126. MR 2320411, DOI 10.4171/RMI/483
- Xiaochun Li, Uniform estimates for some paraproducts, New York J. Math. 14 (2008), 145–192. MR 2413217
- Xiaochun Li, Bilinear Hilbert transforms along curves I: The monomial case, Anal. PDE 6 (2013), no. 1, 197–220. MR 3068544, DOI 10.2140/apde.2013.6.197
- Victor Lie, On the boundedness of the bilinear Hilbert transform along “non-flat” smooth curves, Amer. J. Math. 137 (2015), no. 2, 313–363. MR 3337797, DOI 10.1353/ajm.2015.0013
- Xiaochun Li and Lechao Xiao, Uniform estimates for bilinear Hilbert transforms and bilinear maximal functions associated to polynomials, Amer. J. Math. 138 (2016), no. 4, 907–962. MR 3538147, DOI 10.1353/ajm.2016.0030
- Alexander Nagel, Néstor Rivière, and Stephen Wainger, On Hilbert transforms along curves, Bull. Amer. Math. Soc. 80 (1974), 106–108. MR 450899, DOI 10.1090/S0002-9904-1974-13374-4
- Alexander Nagel, Néstor M. Rivière, and Stephen Wainger, On Hilbert transforms along curves. II, Amer. J. Math. 98 (1976), no. 2, 395–403. MR 450900, DOI 10.2307/2373893
- Alexander Nagel, Nestor Riviere, and Stephen Wainger, A maximal function associated to the curve $(t, t^{2})$, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 5, 1416–1417. MR 399389, DOI 10.1073/pnas.73.5.1416
- E. M. Stein, Some problems in harmonic analysis, Proc. Internat. Congress Math (Nice, 1970), vol.1, Gauthier-Villars, Paris, 1971, pp.173–190.
- Elias M. Stein, Maximal functions. II. Homogeneous curves, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2176–2177. MR 420117, DOI 10.1073/pnas.73.7.2176
- Elias M. Stein and Stephen Wainger, The estimation of an integral arising in multiplier transformations, Studia Math. 35 (1970), 101–104. MR 265995, DOI 10.4064/sm-35-1-101-104
- E. M. Stein and S. Wainger, Maximal functions associated to smooth curves, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 12, 4295–4296. MR 415199, DOI 10.1073/pnas.73.12.4295
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- Christoph Thiele, A uniform estimate, Ann. of Math. (2) 156 (2002), no. 2, 519–563. MR 1933076, DOI 10.2307/3597197
Bibliographic Information
- Dong Dong
- Affiliation: Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, Maryland 20742
- Email: ddong12@cscamm.umd.edu
- Received by editor(s): January 25, 2017
- Published electronically: June 27, 2019
- Additional Notes: The author acknowledges the support from the Gene H. Golub Fund of the Mathematics Department at the University of Illinois.
- Communicated by: Alexander Iosevich
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4245-4258
- MSC (2010): Primary 42B20; Secondary 47B38
- DOI: https://doi.org/10.1090/proc/14518
- MathSciNet review: 4002539