An application of blocks to torsion units in group rings
HTML articles powered by AMS MathViewer
- by Andreas Bächle and Leo Margolis
- Proc. Amer. Math. Soc. 147 (2019), 4221-4231
- DOI: https://doi.org/10.1090/proc/14561
- Published electronically: July 8, 2019
- PDF | Request permission
Abstract:
We use the theory of blocks of cyclic defect to prove that under a certain condition on the principal $p$-block of a finite group $G$, the normalized unit group of the integral group ring of $G$ contains an element of order $pq$ if and only if so does $G$ for $q$ a prime different from $p$. Using this we verify the Prime Graph Question for all alternating and symmetric groups and also for two sporadic simple groups.References
- Andreas Bächle and Mauricio Caicedo, On the prime graph question for almost simple groups with an alternating socle, Internat. J. Algebra Comput. 27 (2017), no. 3, 333–347. MR 3658506, DOI 10.1142/S0218196717500175
- Victor Bovdi and Martin Hertweck, Zassenhaus conjecture for central extensions of $S_5$, J. Group Theory 11 (2008), no. 1, 63–74. MR 2381018, DOI 10.1515/JGT.2008.004
- Frauke M. Bleher, Gerhard Hiss, and Wolfgang Kimmerle, Autoequivalences of blocks and a conjecture of Zassenhaus, J. Pure Appl. Algebra 103 (1995), no. 1, 23–43. MR 1354065, DOI 10.1016/0022-4049(94)00091-V
- Victor Bovdi and Alexander Konovalov, Integral group ring of the Mathieu simple group $M_{24}$, J. Algebra Appl. 11 (2012), no. 1, 1250016, 10. MR 2900886, DOI 10.1142/S0219498811005427
- Andreas Bächle and Leo Margolis, On the prime graph question for integral group rings of 4-primary groups I, Internat. J. Algebra Comput. 27 (2017), no. 6, 731–767. MR 3708050, DOI 10.1142/S0218196717500357
- Andreas Bächle and Leo Margolis, Rational conjugacy of torsion units in integral group rings of non-solvable groups, Proc. Edinb. Math. Soc. (2) 60 (2017), no. 4, 813–830. MR 3715687, DOI 10.1017/S0013091516000535
- Andreas Bächle and Leo Margolis, On the prime graph question for integral group rings of 4-primary groups II, Algebr. Represent. Theory 22 (2019), no. 2, 437–457. MR 3921366, DOI 10.1007/s10468-018-9776-6
- Richard Brauer, Some applications of the theory of blocks of characters of finite groups. I, J. Algebra 1 (1964), 152–167. MR 168662, DOI 10.1016/0021-8693(64)90031-6
- T. Breuer, The GAP Character Table Library, Version 1.2.1, http://www.math.rwth-aachen.de/\~Thomas.Breuer/ctbllib, May 2012, GAP package.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- James A. Cohn and Donald Livingstone, On the structure of group algebras. I, Canadian J. Math. 17 (1965), 583–593. MR 179266, DOI 10.4153/CJM-1965-058-2
- Florian Eisele and Leo Margolis, A counterexample to the first Zassenhaus conjecture, Adv. Math. 339 (2018), 599–641. MR 3866907, DOI 10.1016/j.aim.2018.10.004
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- Walter Feit, Possible Brauer trees, Illinois J. Math. 28 (1984), no. 1, 43–56. MR 730710
- M. Hertweck, Partial augmentations and Brauer character values of torsion units in group rings, 16 pages, manuscript, arXiv:math/0612429v2 [math.RA], 2007.
- Martin Hertweck, The orders of torsion units in integral group rings of finite solvable groups, Comm. Algebra 36 (2008), no. 10, 3585–3588. MR 2458394, DOI 10.1080/00927870802157632
- Martin Hertweck, Zassenhaus conjecture for $A_6$, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 2, 189–195. MR 2423231, DOI 10.1007/s12044-008-0011-y
- G. Higman, Units in group rings, Thesis (Ph.D.), University of Oxford, 1940.
- G. Hiss and K. Lux, Brauer trees of sporadic groups, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989. MR 1033265
- Eric Jespers and Ángel del Río, Group ring groups. Vol. 1. Orders and generic constructions of units, De Gruyter Graduate, De Gruyter, Berlin, 2016. MR 3618092
- W. Kimmerle, On the prime graph of the unit group of integral group rings of finite groups, Groups, rings and algebras, Contemp. Math., vol. 420, Amer. Math. Soc., Providence, RI, 2006, pp. 215–228. MR 2279241, DOI 10.1090/conm/420/07977
- Wolfgang Kimmerle and Alexander Konovalov, Recent advances on torsion subgroups of integral group rings, Groups St Andrews 2013, London Math. Soc. Lecture Note Ser., vol. 422, Cambridge Univ. Press, Cambridge, 2015, pp. 331–347. MR 3495665
- W. Kimmerle and A. Konovalov, On the Gruenberg-Kegel graph of integral group rings of finite groups, Internat. J. Algebra Comput. 27 (2017), no. 6, 619–631. MR 3708045, DOI 10.1142/S0218196717500308
- I. S. Luthar and I. B. S. Passi, Zassenhaus conjecture for $A_5$, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 1, 1–5. MR 1004634, DOI 10.1007/BF02874643
- Leo Margolis, On the prime graph question for integral group rings of Conway simple groups, J. Symbolic Comput. 95 (2019), 162–176. MR 3951554, DOI 10.1016/j.jsc.2019.02.005
- G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, vol. 250, Cambridge University Press, Cambridge, 1998. MR 1632299, DOI 10.1017/CBO9780511526015
- Gary L. Peterson, Automorphisms of the integral group ring of $S_{n}$, Proc. Amer. Math. Soc. 59 (1976), no. 1, 14–18. MR 412259, DOI 10.1090/S0002-9939-1976-0412259-1
- Mohamed Ahmed M. Salim, Torsion units in the integral group ring of the alternating group of degree 6, Comm. Algebra 35 (2007), no. 12, 4198–4204. MR 2372329, DOI 10.1080/00927870701545069
- Mohamed A. M. Salim, Kimmerle’s conjecture for integral group rings of some alternating groups, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 27 (2011), no. 1, 9–22. MR 2813587
- Mohamed A. Salim, The prime graph conjecture for integral group rings of some alternating groups, Int. J. Group Theory 2 (2013), no. 1, 175–185. MR 3065873
- B. Verbeken, Units in Integral Group Rings: The Zassenhaus Conjecture and the Prime Graph Question with the use of the HeLP-method, Master’s thesis, Vrije Universiteit Brussel, 2018.
Bibliographic Information
- Andreas Bächle
- Affiliation: Vakgroep Wiskunde, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Email: andreas.bachle@vub.be
- Leo Margolis
- Affiliation: Vakgroep Wiskunde, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- MR Author ID: 1034185
- Email: leo.margolis@vub.be
- Received by editor(s): September 18, 2018
- Received by editor(s) in revised form: January 8, 2019, and January 21, 2019
- Published electronically: July 8, 2019
- Additional Notes: Both authors are postdoctoral researchers of the Research Foundation Flanders (FWO - Vlaanderen).
- Communicated by: Pham Huu Tiep
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4221-4231
- MSC (2010): Primary 16U60, 20C05, 20C20
- DOI: https://doi.org/10.1090/proc/14561
- MathSciNet review: 4002537
Dedicated: One may dare to ask whether the theory of cyclic blocks can provide additional insight into Zassenhaus’ conjecture (ZC1). We have no clue, but...1