## Monotonicity of maximal equicontinuous factors and an application to toral flows

HTML articles powered by AMS MathViewer

- by T. Hauser and T. Jäger PDF
- Proc. Amer. Math. Soc.
**147**(2019), 4539-4554 Request permission

## Abstract:

We show that for group actions on locally connected spaces the maximal equicontinuous factor map is always monotone, that is, the preimages of single points are connected. As an application, we obtain that if the maximal equicontinuous factor of a homeomorphism of the two-torus is minimal, then it is either (i) an irrational translation of the two-torus, (ii) an irrational rotation on the circle, or (iii) the identity on a singleton.## References

- Joseph Auslander,
*Minimal flows and their extensions*, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122. MR**956049** - Philip Boyland, André de Carvalho, and Toby Hall,
*New rotation sets in a family of torus homeomorphisms*, Invent. Math.**204**(2016), no. 3, 895–937. MR**3502068**, DOI 10.1007/s00222-015-0628-2 - Michael Baake and Uwe Grimm,
*Aperiodic order. Vol. 1*, Encyclopedia of Mathematics and its Applications, vol. 149, Cambridge University Press, Cambridge, 2013. A mathematical invitation; With a foreword by Roger Penrose. MR**3136260**, DOI 10.1017/CBO9781139025256 - François Béguin, Sylvain Crovisier, and Tobias Jäger,
*A dynamical decomposition of the torus into pseudo-circles*, Modern theory of dynamical systems, Contemp. Math., vol. 692, Amer. Math. Soc., Providence, RI, 2017, pp. 39–50. MR**3666065**, DOI 10.1090/conm/692 - R. H. Bing,
*A homogeneous indecomposable plane continuum*, Duke Math. J.**15**(1948), 729–742. MR**27144** - Robert J. Daverman,
*Decompositions of manifolds*, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR**872468** - Tomasz Downarowicz,
*Survey of odometers and Toeplitz flows*, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 7–37. MR**2180227**, DOI 10.1090/conm/385/07188 - John Franks,
*Generalizations of the Poincaré-Birkhoff theorem*, Ann. of Math. (2)**128**(1988), no. 1, 139–151. MR**951509**, DOI 10.2307/1971464 - John Franks,
*Realizing rotation vectors for torus homeomorphisms*, Trans. Amer. Math. Soc.**311**(1989), no. 1, 107–115. MR**958891**, DOI 10.1090/S0002-9947-1989-0958891-1 - John G. Hocking and Gail S. Young,
*Topology*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR**0125557** - T. Jäger,
*Linearization of conservative toral homeomorphisms*, Invent. Math.**176**(2009), no. 3, 601–616. MR**2501297**, DOI 10.1007/s00222-008-0171-5 - T. Jäger, F. Kwakkel, and A. Passeggi,
*A classification of minimal sets of torus homeomorphisms*, Math. Z.**274**(2013), no. 1-2, 405–426. MR**3054336**, DOI 10.1007/s00209-012-1076-y - T. Jäger and A. Passeggi,
*On torus homeomorphisms semiconjugate to irrational rotations*, Ergodic Theory Dynam. Systems**35**(2015), no. 7, 2114–2137. MR**3394110**, DOI 10.1017/etds.2014.23 - T. Jäger and F. Tal,
*Irrational rotation factors for conservative torus homeomorphisms*, Ergodic Theory Dynam. Systems**37**(2017), no. 5, 1537–1546. MR**3667998**, DOI 10.1017/etds.2015.112 - Anatole Katok and Boris Hasselblatt,
*Introduction to the modern theory of dynamical systems*, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR**1326374**, DOI 10.1017/CBO9780511809187 - John L. Kelley,
*General topology*, Graduate Texts in Mathematics, No. 27, Springer-Verlag, New York-Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]. MR**0370454** - A. Koropecki, A. Passeggi, and M. Sambarino,
*The Franks-Misiurewicz conjecture for extensions of irrational rotations*, Preprint arXiv:1611.05498, (2016). - Andres Koropecki and Fabio Armando Tal,
*Strictly toral dynamics*, Invent. Math.**196**(2014), no. 2, 339–381. MR**3193751**, DOI 10.1007/s00222-013-0470-3 - Jaroslaw Kwapisz,
*Every convex polygon with rational vertices is a rotation set*, Ergodic Theory Dynam. Systems**12**(1992), no. 2, 333–339. MR**1176627**, DOI 10.1017/S0143385700006787 - Douglas McMahon,
*Weak mixing and a note on a structure theorem for minimal transformation groups*, Illinois J. Math.**20**(1976), no. 2, 186–197. MR**394616** - D. McMahon and T. S. Wu,
*On the connectedness of homomorphisms in topological dynamics*, Trans. Amer. Math. Soc.**217**(1976), 257–270. MR**413067**, DOI 10.1090/S0002-9947-1976-0413067-2 - MichałMisiurewicz and Krystyna Ziemian,
*Rotation sets for maps of tori*, J. London Math. Soc. (2)**40**(1989), no. 3, 490–506. MR**1053617**, DOI 10.1112/jlms/s2-40.3.490 - H. Poincare,
*Sur les Equations Lineaires aux Differentielles Ordinaires et aux Differences Finies*, Amer. J. Math.**7**(1885), no. 3, 203–258 (French). MR**1505385**, DOI 10.2307/2369270 - Joseph J. Rotman,
*An introduction to algebraic topology*, Graduate Texts in Mathematics, vol. 119, Springer-Verlag, New York, 1988. MR**957919**, DOI 10.1007/978-1-4612-4576-6 - Martin Schlottmann,
*Generalized model sets and dynamical systems*, Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2000, pp. 143–159. MR**1798991**

## Additional Information

**T. Hauser**- Affiliation: Faculty of Mathematics and Computer Science Institute of Mathematics, Friedrich Schiller University, 07737 Jena, Germany
- Email: till.hauser@uni-jena.de
**T. Jäger**- Affiliation: Faculty of Mathematics and Computer Science Institute of Mathematics, Friedrich Schiller University, 07737 Jena, Germany
- Email: tobias.jaeger@uni-jena.de
- Received by editor(s): November 17, 2017
- Received by editor(s) in revised form: December 21, 2018, and January 21, 2019
- Published electronically: May 29, 2019
- Additional Notes: The second author was supported by a Heisenberg professorship of the German Research Council (DFG grant OE 538/6-1). The project was also supported by the DFG project
*Dynamics on surfaces*(DFG grant OE 538/9-1). - Communicated by: Wenxian Shen
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 4539-4554 - MSC (2010): Primary 54H20; Secondary 37B05, 37E30
- DOI: https://doi.org/10.1090/proc/14562
- MathSciNet review: 4002562