On the eventual local positivity for polyharmonic heat equations
HTML articles powered by AMS MathViewer
- by Lucas C. F. Ferreira and Vanderley A. Ferreira Jr.
- Proc. Amer. Math. Soc. 147 (2019), 4329-4341
- DOI: https://doi.org/10.1090/proc/14565
- Published electronically: June 27, 2019
- PDF | Request permission
Abstract:
In this paper we show the eventual local positivity property for higher-order heat equations (including noninteger order). As a consequence, we give a positive answer for an open problem stated by Barbatis and Gazzola [Contemp. Math. 594 (2013)] for polyharmonic heat equations. Moreover, we obtain some polynomial decay properties of solutions.References
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Gerassimos Barbatis and Filippo Gazzola, Higher order linear parabolic equations, Recent trends in nonlinear partial differential equations. I. Evolution problems, Contemp. Math., vol. 594, Amer. Math. Soc., Providence, RI, 2013, pp. 77–97. MR 3155904, DOI 10.1090/conm/594/11775
- Elvise Berchio, On the sign of solutions to some linear parabolic biharmonic equations, Adv. Differential Equations 13 (2008), no. 9-10, 959–976. MR 2482583
- Elvise Berchio and Filippo Gazzola, Positive solutions to a linearly perturbed critical growth biharmonic problem, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), no. 4, 809–823. MR 2746443, DOI 10.3934/dcdss.2011.4.809
- R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc. 95 (1960), 263–273. MR 119247, DOI 10.1090/S0002-9947-1960-0119247-6
- Xavier Cabré and Yannick Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré C Anal. Non Linéaire 31 (2014), no. 1, 23–53. MR 3165278, DOI 10.1016/j.anihpc.2013.02.001
- Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245–1260. MR 2354493, DOI 10.1080/03605300600987306
- Jan W. Cholewa and Anibal Rodriguez-Bernal, Critical and supercritical higher order parabolic problems in $\Bbb {R}^N$, Nonlinear Anal. 104 (2014), 50–74. MR 3196888, DOI 10.1016/j.na.2014.03.013
- Hongjie Dong and Hong Zhang, Schauder estimates for higher-order parabolic systems with time irregular coefficients, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 47–74. MR 3385152, DOI 10.1007/s00526-014-0777-y
- Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range, Adv. Differential Equations 9 (2004), no. 9-10, 1009–1038. MR 2098064
- M. A. Evgrafov and M. M. Postnikov, The asymptotics of Green’s functions of parabolic and elliptic equations with constant coefficients, Mat. Sb. (N.S.) 82 (124) (1970), 3–29 (Russian). MR 0273206
- Lucas C. F. Ferreira and Cláudia Aline A. S. Mesquita, Existence and symmetries for elliptic equations with multipolar potentials and polyharmonic operators, Indiana Univ. Math. J. 62 (2013), no. 6, 1955–1982. MR 3205537, DOI 10.1512/iumj.2013.62.5131
- Alberto Ferrero, Filippo Gazzola, and Hans-Christoph Grunau, Decay and eventual local positivity for biharmonic parabolic equations, Discrete Contin. Dyn. Syst. 21 (2008), no. 4, 1129–1157. MR 2399453, DOI 10.3934/dcds.2008.21.1129
- V. A. Galaktionov and S. I. Pohozaev, Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators, Indiana Univ. Math. J. 51 (2002), no. 6, 1321–1338. MR 1948452, DOI 10.1512/iumj.2002.51.2131
- Filippo Gazzola and Hans-Christoph Grunau, Eventual local positivity for a biharmonic heat equation in $\Bbb R^n$, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 1, 83–87. MR 2375584, DOI 10.3934/dcdss.2008.1.83
- Filippo Gazzola and Hans-Christoph Grunau, Some new properties of biharmonic heat kernels, Nonlinear Anal. 70 (2009), no. 8, 2965–2973. MR 2509382, DOI 10.1016/j.na.2008.12.039
- Filippo Gazzola, Hans-Christoph Grunau, and Guido Sweers, Polyharmonic boundary value problems, Lecture Notes in Mathematics, vol. 1991, Springer-Verlag, Berlin, 2010. Positivity preserving and nonlinear higher order elliptic equations in bounded domains. MR 2667016, DOI 10.1007/978-3-642-12245-3
- X. Li and R. Wong, Asymptotic behaviour of the fundamental solution to $\partial u/\partial t=-(-\Delta )^mu$, Proc. Roy. Soc. London Ser. A 441 (1993), no. 1912, 423–432. MR 1219264, DOI 10.1098/rspa.1993.0071
- Michael Winkler, Refined asymptotics for entire solutions of a biharmonic equation with a supercritical nonlinearity, Math. Ann. 348 (2010), no. 3, 633–666. MR 2677898, DOI 10.1007/s00208-010-0494-6
Bibliographic Information
- Lucas C. F. Ferreira
- Affiliation: IMECC-Department of Mathematics, University of Campinas, Rua Sérgio Buarque de Holanda, 651, CEP 13083-859, Campinas, SP, Brazil
- MR Author ID: 795159
- Email: lcff@ime.unicamp.br
- Vanderley A. Ferreira Jr.
- Affiliation: Divisão de Ciências Fundamentais, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, 50, CEP 12228-900, São José dos Campos, SP, Brazil
- MR Author ID: 1122319
- Email: ferreira@ita.br
- Received by editor(s): August 8, 2018
- Received by editor(s) in revised form: November 25, 2018, and January 11, 2019
- Published electronically: June 27, 2019
- Additional Notes: The first author was partially supported by FAPESP grant #2016/16104-8 and CNPq grant #308024/2015-0, Brazil.
The second author was supported by FAPESP grant #2016/06209-7, Brazil. - Communicated by: Joachim Krieger
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4329-4341
- MSC (2010): Primary 35K25, 26A33, 35Bxx, 35B50, 35B40, 35B05
- DOI: https://doi.org/10.1090/proc/14565
- MathSciNet review: 4002545