## On a class of singular measures satisfying a strong annular decay condition

HTML articles powered by AMS MathViewer

- by Ángel Arroyo and José G. Llorente PDF
- Proc. Amer. Math. Soc.
**147**(2019), 4409-4423 Request permission

## Abstract:

A metric measure space $(X, d, \mu )$ is said to satisfy the*strong annular decay condition*if there is a constant $C>0$ such that \begin{equation*} \mu \big ( B(x, R) \setminus B(x,r) \big ) \leq C \frac {R-r}{R} \mu (B(x,R)) \end{equation*} for each $x\in X$ and all $0<r \leq R$. If $d_{\infty }$ is the distance induced by the $\infty$-norm in $\mathbb {R}^N$, we construct examples of singular measures $\mu$ on $\mathbb {R}^N$ such that $(\mathbb {R}^N, d_{\infty }, \mu )$ satisfies the strong annular decay condition.

## References

- Tomasz Adamowicz, MichałGaczkowski, and Przemysław Górka,
*Harmonic functions on metric measure spaces*, Rev. Mat. Complut.**32**(2019), no. 1, 141–186. MR**3896674**, DOI 10.1007/s13163-018-0272-7 - Angel Arroyo and José G. Llorente,
*On the Dirichlet problem for solutions of a restricted nonlinear mean value property*, Differential Integral Equations**29**(2016), no. 1-2, 151–166. MR**3450753** - Ángel Arroyo and José G. Llorente,
*A priori Hölder and Lipschitz regularity for generalized $p$-harmonious functions in metric measure spaces*, Nonlinear Anal.**168**(2018), 32–49. MR**3759468**, DOI 10.1016/j.na.2017.11.007 - Pascal Auscher and Eddy Routin,
*Local $Tb$ theorems and Hardy inequalities*, J. Geom. Anal.**23**(2013), no. 1, 303–374. MR**3010282**, DOI 10.1007/s12220-011-9249-1 - A. Beurling and L. Ahlfors,
*The boundary correspondence under quasiconformal mappings*, Acta Math.**96**(1956), 125–142. MR**86869**, DOI 10.1007/BF02392360 - Anders Björn, Jana Björn, and Juha Lehrbäck,
*The annular decay property and capacity estimates for thin annuli*, Collect. Math.**68**(2017), no. 2, 229–241. MR**3633059**, DOI 10.1007/s13348-016-0178-y - Stephen M. Buckley,
*Is the maximal function of a Lipschitz function continuous?*, Ann. Acad. Sci. Fenn. Math.**24**(1999), no. 2, 519–528. MR**1724375** - Stephen M. Buckley,
*Estimates for operator norms on weighted spaces and reverse Jensen inequalities*, Trans. Amer. Math. Soc.**340**(1993), no. 1, 253–272. MR**1124164**, DOI 10.1090/S0002-9947-1993-1124164-0 - Luis A. Caffarelli, Eugene B. Fabes, and Carlos E. Kenig,
*Completely singular elliptic-harmonic measures*, Indiana Univ. Math. J.**30**(1981), no. 6, 917–924. MR**632860**, DOI 10.1512/iumj.1981.30.30067 - Tobias H. Colding and William P. Minicozzi II,
*Liouville theorems for harmonic sections and applications*, Comm. Pure Appl. Math.**51**(1998), no. 2, 113–138. MR**1488297**, DOI 10.1002/(SICI)1097-0312(199802)51:2<113::AID-CPA1>3.0.CO;2-E - John E. Hutchinson,
*Fractals and self-similarity*, Indiana Univ. Math. J.**30**(1981), no. 5, 713–747. MR**625600**, DOI 10.1512/iumj.1981.30.30055 - Yanick Heurteaux,
*Sur la comparaison des mesures avec les mesures de Hausdorff*, C. R. Acad. Sci. Paris Sér. I Math.**321**(1995), no. 1, 61–65 (French, with English and French summaries). MR**1340083** - Yanick Heurteaux,
*Dimension of measures: the probabilistic approach*, Publ. Mat.**51**(2007), no. 2, 243–290. MR**2334791**, DOI 10.5565/PUBLMAT_{5}1207_{0}1 - J.-P. Kahane,
*Trois notes sur les ensembles parfaits linéaires*, Enseign. Math. (2)**15**(1969), 185–192 (French). MR**245734** - Juha Kinnunen and Parantap Shukla,
*Gehring’s lemma and reverse Hölder classes on metric measure spaces*, Comput. Methods Funct. Theory**14**(2014), no. 2-3, 295–314. MR**3265363**, DOI 10.1007/s40315-014-0071-1 - Juha Kinnunen and Parantap Shukla,
*The structure of reverse Hölder classes on metric measure spaces*, Nonlinear Anal.**95**(2014), 666–675. MR**3130552**, DOI 10.1016/j.na.2013.10.008 - Juha Kinnunen and Parantap Shukla,
*The distance of $L^\infty$ from BMO on metric measure spaces*, Adv. Pure Appl. Math.**5**(2014), no. 2, 117–129. MR**3213544**, DOI 10.1515/apam-2014-0018 - José G. Llorente,
*On the Gehring-Hayman property, the Privalov-Riesz theorems, and doubling measures*, Michigan Math. J.**52**(2004), no. 3, 553–571. MR**2097398**, DOI 10.1307/mmj/1100623413 - José González Llorente and Artur Nicolau,
*Regularity properties of measures, entropy and the law of the iterated logarithm*, Proc. London Math. Soc. (3)**89**(2004), no. 2, 485–524. MR**2078701**, DOI 10.1112/S0024611504014844 - Yuval Peres, Károly Simon, and Boris Solomyak,
*Absolute continuity for random iterated function systems with overlaps*, J. London Math. Soc. (2)**74**(2006), no. 3, 739–756. MR**2286443**, DOI 10.1112/S0024610706023258 - Albert N. Shiryaev,
*Probability. 1*, 3rd ed., Graduate Texts in Mathematics, vol. 95, Springer, New York, 2016. Translated from the fourth (2007) Russian edition by R. P. Boas and D. M. Chibisov. MR**3467826** - Pablo Shmerkin and Boris Solomyak,
*Absolute continuity of self-similar measures, their projections and convolutions*, Trans. Amer. Math. Soc.**368**(2016), no. 7, 5125–5151. MR**3456174**, DOI 10.1090/tran6696 - Po-Lam Yung,
*Doubling properties of self-similar measures*, Indiana Univ. Math. J.**56**(2007), no. 2, 965–990. MR**2317553**, DOI 10.1512/iumj.2007.56.2839 - A. Zygmund,
*Trigonometric series. Vol. I, II*, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002. With a foreword by Robert A. Fefferman. MR**1963498**

## Additional Information

**Ángel Arroyo**- Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
- Email: angel.a.arroyo@jyu.fi
**José G. Llorente**- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- MR Author ID: 327617
- Email: jgllorente@mat.uab.cat
- Received by editor(s): September 4, 2018
- Received by editor(s) in revised form: January 25, 2019
- Published electronically: May 17, 2019
- Additional Notes: This research was partially supported by grants MTM2017-85666-P, 2017 SGR 395.
- Communicated by: Jeremy Tyson
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 4409-4423 - MSC (2010): Primary 28A75, 30L99
- DOI: https://doi.org/10.1090/proc/14576
- MathSciNet review: 4002552