PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY.

Volume 147, Number 10, October 2019, Pages 4371-4378
https://doi.org/10.1090/proc/14619

Article electronically published on June 10, 2019
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ABSTRACT. We compute K-theory for the reduced group C*-algebras of gen-
eralized Lamplighter groups.

1. INTRODUCTION

The classical Lamplighter group is given by the semidirect product (), (Z/27))x
Z, where the Z-action on @, (Z/27Z) is induced by the canonical translation action
of Z on itself. This construction can be generalized by replacing Z/2Z and Z by
other groups. The classical Lamplighter group and its generalizations are impor-
tant examples in group theory which led to solutions of several open problems (see
for instance [6L[7,10]).

The goal of these notes is to derive a K-theory formula for group C*-algebras of
generalized Lamplighter groups of the form (@ X) x I', where ¥ is an arbitrary
finite group and I' is an arbitrary countable group. As in the classical setting, the
I'-action on @ ¥ is induced by the canonical left translation action of I' on itself.
Our computations are inspired by [9[13], which treat the special case of free groups
I ([9] deals with the case I' = Z). Our method, however, is completely different
from the ones adopted in [9L13].

Our main result reads as follows. Let X be a finite group and let I" be a countable
group. Let con ¥ be the set of conjugacy classes in ¥, and let con™ ¥ := con X\
{{1}} be the set of non-trivial conjugacy classes. Let C be the set of conjugacy
classes of finite subgroups of T". For a finite subgroup C of T', let F(C) be the set
of non-empty finite subsets of the right coset space C\I' which are not of the form
7= 1Y) for a finite subgroup D C T' with C € D and Y C D\I', where 7 : C\I' —»
D\T is the canonical projection. The normalizer N¢ := {'y el 4CHy 1 = C} acts
on F(C) by left multiplication, and we denote the set of orbits by No\F(C). Given
X € F(C), we write C- X :=| |, x C-x and let (con* X)“¥ be the set of functions
C-X — con* X. v € C acts on ¢ € (con* X)X via (v.¢)(x) = p(y ), and we
set Stabc () = {y € C: v.¢p = ¢} for ¢ € (con* X)X,
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Theorem 1.1. If T" satisfies the Baum-Connes conjecture with coefficients, then
the K-theory of Cx((Dr X) x T) is given by

K.(C5(P D) 1))
I

= K.(CX(1)

o | P ) D K. (C3(Stabc ()

[CleC  [X]ENC\F(C) [p]€C\((con* £)C-X)

Here we take one representative C out of each class in C, one representative X

out of each class in Nc\F(C), and one representative ¢ out of each class in
C\ ((con* x)¢X).

We refer the reader to [Il[5L14] and the references therein for more information
about the Baum-Connes conjecture. For instance, Theorem [[.T]applies to all groups
with the Haagerup property [11] and all hyperbolic groups [12].

Note that ¥ enters our formula only in the form of con* ¥. What is more, if T'
is infinite, then for each [C] € C, we simply get a free abelian group of countably
infinite rank, so that K,(C5((Dr %) x I')) does not depend on ¥ at all. This
becomes particularly evident in K7, where Theorem [[.1] yields the following.

Corollary 1.2. Let ¥ be a finite group and let I be a countable group. If T’
satisfies the Baum-Connes conjecture with coefficients, then the canonical inclusion
I' - 3 x T induces an isomorphism

K\ (C{(1)) = K (C5((ED D) » 1)

r

Moreover, for torsion-free I', our formula becomes particularly simple.

Corollary 1.3. Let X and T" be as in Theorem [l Assume that T' is torsion-free.
Write FIN® for the set of non-empty finite subsets of I'. Then, under the same
assumptions as in Theorem [[1], we have

K.(C5((EP D) # 1)) = K.(CA(D)) @ ) D K.

[X]€ET\ FINX (con* X)X

The proof of our main theorem proceeds in two steps. First, using the Going-
Down principle from [2L8] (see also [5, §3]), we show that C}((@ X) x T') has the
same K-theory as the crossed product C((con X)I') x,.T" for the topological full shift
I' ~ (con ¥)F'. Here we view con ¥ as a finite alphabet. Secondly, we compute
K-theory for C'((con ¥)1) x,.T" using [3l4]. As a byproduct, we obtain a general K-
theory formula for crossed products of topological full shifts (see Proposition 24)).
Both steps require our assumption that I' satisfies the Baum-Connes conjecture
with coefficients.

We point out that it is not possible to apply the results in [3}[4] directly because
[3,[] only deal with crossed products attached to actions on commutative C*-
algebras.
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2. K-THEORY FOR CERTAIN CROSSED PRODUCTS AND GENERALIZED
LAMPLIGHTER GROUPS

We first discuss the following abstract situation: Let A = @], My, be a finite
dimensional C*-algebra, where M}, is the algebra of k x k-matrices. We assume
that kg =1,1.e., A=C® My, &...4 My, . Let I' be a countable group. We form
the tensor product @ A as follows: For every finite subset F' C I', we form the
ordinary tensor product &) A, and for F; C F5, we have the canonical embedding
Qr A= Qp, A, 2~ 2®1 (here 1 denotes the unit of @p,\ A, and we used

the canonical isomorphism @ A= (Qp, 4) ® (®F2\F1 A)) Then set Q. A :=
lim - @ A. The left T'-action on itself by translations induces an action I' ~ Q. A.
Our goal is to compute the K-theory of (@ A) %, I'. The special case A = C5(X)
will lead to Theorem [[1]

Let e; be a minimal projection in My, C A. In particular, eg =1 € C C A. For
F CT finite, let ¢ € {1,... ,n}F, ie., ¢ is a function ¢ : F — {1,...,n}. Define
e = Qrer o) € QrAC QrA If F=0, then for p: 0 — {1,...,n}, we set
e, := 1 (where 1 denotes the unit of @ A). The set

(1) {e<p: cpe{l,...,n}F,FQFﬁnite}

is a I'-invariant family of commuting non-zero projections, which is closed under
multiplication up to zero (i.e., the product of two projections in the family is either
zero or again a projection in the family). We do not need it now, but the family
is also linearly independent (see Lemma and the proof of ([2))). Let D be the
C*-subalgebra of @ A generated by the projections in (). Let ¢ : D — QA be
the canonical embedding. Note that ¢ is I'-equivariant.

Proposition 2.1. IfT satisfies the Baum-Connes conjecture with coefficients, then
v %, I induces an isomorphism K, (D », ') =2 K, (Qp A) x, I').

Proof. By the Going-Down principle (see [5, §3]), it suffices to show that for
every finite subgroup H C T', ¢ x,, H induces an isomorphism K,.(D x, H) 2
K.((@p A) . H).

Let us first treat the case of the trivial subgroup, H = {1}. For a fixed finite
subset F' C T, let

Dp = C*({e@: pe{l,....nt for F' C F})

Then D = lim . Dp. We also have Rr A= lim & A. As K-theory is continuous,
i.e., preserves direct limits, it suffices to show that v := t|p, : Dr = @ A induces
an isomorphism in K. Let [tp] € KK(Dp, @ A) be the K K-element determined
by ¢p. Consider the projection e = >-"" je; in A. e is a full projection in A, and
we have ede = @ ,Ce;. The @ A-Qy eAe-imprimitivity bimodule ), Ae
gives rise to a K K-element jr € KK(Qp A, Qpede). jr is invertible, and its
inverse is the K K-element induced by the inclusion @ peAde — @ A. Hence it
suffices to show that the Kasparov product [tr] - jr € KK(Dp, @ eAe) induces
an isomorphism K,(Dr) = K.(Q  eAe).

First, consider the special case of a single element subset, F' = {f} for some
f €T Let us write Dy := Dy, 1y == 1ypy and jy := jgsy. Since Dy = C-1+Ce; +
...+Ce,, (where 1 denotes the unit of @ A) and eAe = Ceq®Ce 1 ®. . .®Cey,, we can
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describe the map K, (Dr) = K.(Q eAe) induced by [cf] - j; by the commutative
diagram

K.(Dj) —— K.(eAe)

Z[1) & @, Zle)) — @, Zle]

where the upper horizontal map is the map we want to describe, and My is the
(n+1) x (n+ 1)-matrix

1 0 0

ki 1 0
My =

kn O 1

Obviously, My is invertible. Note that everything is independent of f.

Now consider the case of a general finite subset F* C I'. Since Dp = ®feF Dy, we
have K\(Dr) & @ ;cp K« (Dy), and we also have K.(QpeAde) = @ cp Ki(ede).
The homomorphism K,(Dr) — K.(Qrede) induced by [tr] - jr respects this
tensor product decomposition, in the sense that we have a commutative diagram

®;er K.(Dj) === K.(Dr) - K.(®p cAe) == @ K.(cAe)

®er (2] @ B, Zle) it Rer (Do Zle)).-

Again, we see that M is invertible because all the My, f € F, are.

Now let us deal with the case of an arbitrary finite subgroup H C I'. If we
choose an increasing sequence of H-invariant finite subsets F© C I' whose union
is I', we obtain H-equivariant inductive limit decompositions D = liglF Dp and

RrA = th @ A. Hence, again by continuity of K-theory, it suffices to show
that, for every F, tpx, H : Dpx,H — (Q A) X, H induces an isomorphism in K.
Letjr € KK(Qp A, Qf eAe) be as before. Since the full projection Qe € Qp A
giving rise to jp is H-invariant, jr is a K K7-equivalence (see [5, Remark 3.3.16]).
Thus, to show that tp 3, H : Dp x, H = (Q A) x, H induces an isomorphism in
K., it suffices to show that [tp] jr € KK (Dp,® eAe) induces an isomorphism
K.(Dp x, H) = K. ((Q eAe) x, H), for which in turn it is enough to prove that
[tr] - jr is a K KH-equivalence.

Now both Dp and @ eAe are finite dimensional commutative C*-algebras
with an H-action, so that we are exactly in the setting of [4, Appendix]. It
is straightforward to check that [vp] - jp = xf/lp, where xﬁF is the element in
KKH"(Dp,® eAe) corresponding to the matrix M, as constructed in [4, Appen-
dix]. By [4, Lemma A.2], z} is a KK"-equivalence because Mp is an invertible
matrix. The inverse of xf/lp is given by x]ﬁ;l. O
Remark 2.2. Note that our assumption on A that C appears as a direct summand
is really necessary. For instance, if A = My, then @ A would be the UHF algebra
Mje (as soon as I' is infinite). But we have Ko(Maw) = Z[1], while our method
would always yield a free abelian group for K. Hence our method fails.
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Let us now compare with the topological full shift I ~ {0, ... ,n}r. For a finite
subset F' C T, let mp be the canonical projection {0, ..., n}r —-{0,... ,n}F. Given
¢ € {0,...,n}", we have the cylinder set 7' (¢) and its characteristic function
L1, € C({0,...,n}"). The following is now easy to see.

Lemma 2.3. The I'-equivariant isomorphism D = C({0, .. .,n}r), e, — 177?(9@)

induces an isomorphism D x, T = C({0,...,n}") x, T
We now compute K-theory for C({0, ... ,n}r) X, I

Proposition 2.4. IfT satisfies the Baum-Connes conjecture with coefficients, then

K.(C{0,...,n}") %, T)
= K. (CX(I)

e| D ) &PD K.(C5(Stabe ()

[CleC  [X]ENC\F(C)  [pleC\({1,...,n}O¥)
Here we use the same notation as in Theorem [l

Proof. First of all, the same arguments as for [4, Examples 2.13 & 3.1] show that
the family

{71';1(@): pe{l,....n}" ,FCT ﬁnite}

is a I'-invariant regular basis for the compact open sets in {0, ... ,n}r. Here T’

acts via 7.7 (p) = 77;%(7.90), where v.¢ € {1,...,n}7F is given by (y.¢)(z) =

©(y~1z). Therefore, using the bijection

L] stabr(P)\ ({1,...,n}")

[F]el'\ FIN
>\ {ng(ap): pefl,...n)F, FCr ﬁnite}, o] = [¢),

and the observation that for y € I"'and ¢ € {1, ..., n}F we have 7.7 (p) = 77" ()
if and only if v+ F' = F and v.¢ = ¢, we may apply [4, Corollary 3.14], and obtain
(2)

K, (c ({o,...,n}F) ><1TF) ~ P P K., (C%(Stabr(¢))).

[FIEP\FIN  [p]estabr (F)\({1,...,n}"")

Here FIN is the set of all finite subsets of T', and T'\ FIN is the set of orbits of the
left translation action I' ~ FIN. Moreover, Stabr(F) and Stabr(¢) denote the sta-
bilizer groups Stabr(F) = {y € I': v- F = F} and Stabr(y) = {y €1 7.0 = ¢},
and C5(Stabr(¢)) is the reduced group C*-algebra of Stabr(y).

Now we analyze I'\ FIN and Stabr(F) for [F] € I'\FIN. For F' = {}, we have
Stabr(¢) = I'. This yields K.(C5(I")) as one direct summand on the right-hand
side of (). We set FIN™ := FIN\ {#}. Let us describe I'\ FIN*. Let C, F(C) and
N¢ be as in Theorem [[LT1 Then we claim that

(3) | | Ne\F(C) = I\FIN*, [X] — [C - X]
[ClecC
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is a bijection, and that for every [C] € C, [X] € N\ F(C), we have
4) Stabr(C' - X) = C.

First note that the map (3]) is well-defined. Moreover, this map is surjective because
every I € FIN™ with Stabp(F) = C is of the form F = C - X for some finite, non-
empty subset X C C\I'. Now, X must lie in F(C). Suppose not, i.e., X = 7= 1(Y)
for a finite subgroup D C T" with C € D and Y C D\I', where 7w : C\I' - D\T
is the canonical projection. Then FF = C - X = D -Y, so that D C Stabp(F), in
contradiction to Stabr(F) = C. Not only does this show surjectivity, but it also
proves (). To see injectivity of (B]), assume that X € F(C) and X' € F(C") satisfy
[C-X]=[C"-X],say C'"- X' =~-C-X. It follows that C’ = Stabp(C’ - X') =
v Stabr(C - X)y~1 = vC~y~!. Hence [C] = [C’], and since we are taking one
representative out of each class, we must actually have C = C’. But then v must
lie in N¢, and we must have C- X' =~-C-X =C-v-X, so that X' =~ X, i.e.,
[X'] = [X] in Nc\F(C). This shows injectivity.

We now complete the proof by plugging the bijections @), ) into @) and
observing that for X € F(C) and ¢ € {1,...,n}“™, we have

Stabr(p) C Stabr(C' - X) = C.
(]

Combining Proposition 2.1l Lemma 23] and Proposition 2.4} and using the con-
crete construction in [4] §3] for our following assertion on K7, we obtain the follow-
ing.

Corollary 2.5. In the situation of Proposition 21l if T satisfies the Baum-Connes
conjecture with coefficients, then we have

E.(QA) %, T)
r
= K.(CX()
@ @ P K.(Ci(Stabe())
[CleC [X]eENC\F(O) [gleC\({1,...,n}°X)
In Ky, the canonical map CY(I') = (Qp A) %, I' induces an isomorphism

Ki(C5(D) = K1 (R A) %, T).
I

If T is in addition torsion-free, then we obtain

E.(QA) =, T) = K. (C5(1) & @ D £
r

[X]ET\FIN*  {1,..,n}¥

Now let us apply our K-theory formula to generalized Lamplighter groups. Con-
sider the case A = C(X) for a finite group X. Our assumption on A that C appears
as a direct summand is satisfied because the trivial representation gives rise to a di-
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rect summand C in C5(X). The remaining direct summands of A are in one-to-one
correspondence with con™ X. Hence we obtain

Corollary 2.6. Let X be a finite group. If T satisfies the Baum-Connes conjecture
with coefficients, then we have

K.(C5(P D) 1))
I

= K,(C5(T)

s | P b D K. (C5(Stabe()))
[CleC [X]ENC\F(C) [p]€C\((con* £)C-X)

In Ky, the canonical inclusion I' — ¥ x I' induces an isomorphism

K1 (C{(1)) = K1 (C5 (D B) x 1)
r

If T is in addition torsion-free, then we obtain

K.(C5((EDD) # 1)) = K.(CR(D)) @ ) D K.

[X]EM\ FINX (conX %)X
This completes the proofs of Theorem [[.Tl and Corollaries and [[.3

Remark 2.7. As in [, Corollary 3.14], we get K K-equivalences in Proposition 24]
and Corollaries and if " satisfies the strong Baum-Connes conjecture.

Remark 2.8. Moreover, as in [4, Corollary 3.14], we could allow coefficients in
Proposition 2:4] and Corollaries and However, in Corollary 2.6] we would
only get a K-theory formula for crossed products B %, ((PpX) x I') where the
(@r X)-action on the C*-algebra B is trivial.
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