$K$-theory for generalized Lamplighter groups
HTML articles powered by AMS MathViewer
- by Xin Li
- Proc. Amer. Math. Soc. 147 (2019), 4371-4378
- DOI: https://doi.org/10.1090/proc/14619
- Published electronically: June 10, 2019
- PDF | Request permission
Abstract:
We compute $K$-theory for the reduced group C*-algebras of generalized Lamplighter groups.References
- Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras, $C^\ast$-algebras: 1943â1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240â291. MR 1292018, DOI 10.1090/conm/167/1292018
- J. Chabert, S. Echterhoff, and H. Oyono-Oyono, Going-down functors, the KĂŒnneth formula, and the Baum-Connes conjecture, Geom. Funct. Anal. 14 (2004), no. 3, 491â528. MR 2100669, DOI 10.1007/s00039-004-0467-6
- Joachim Cuntz, Siegfried Echterhoff, and Xin Li, On the K-theory of the C*-algebra generated by the left regular representation of an Ore semigroup, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 3, 645â687. MR 3323201, DOI 10.4171/JEMS/513
- Joachim Cuntz, Siegfried Echterhoff, and Xin Li, On the $K$-theory of crossed products by automorphic semigroup actions, Q. J. Math. 64 (2013), no. 3, 747â784. MR 3094498, DOI 10.1093/qmath/hat021
- Joachim Cuntz, Siegfried Echterhoff, Xin Li, and Guoliang Yu, $K$-theory for group $C^*$-algebras and semigroup $C^*$-algebras, Oberwolfach Seminars, vol. 47, BirkhÀuser/Springer, Cham, 2017. MR 3618901, DOI 10.1007/978-3-319-59915-1
- Tullia Dymarz, Bilipschitz equivalence is not equivalent to quasi-isometric equivalence for finitely generated groups, Duke Math. J. 154 (2010), no. 3, 509â526. MR 2730576, DOI 10.1215/00127094-2010-044
- Anna Dyubina, Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups, Internat. Math. Res. Notices 21 (2000), 1097â1101. MR 1800990, DOI 10.1155/S1073792800000544
- Siegfried Echterhoff, Ryszard Nest, and HervĂ© Oyono-Oyono, Fibrations with noncommutative fibers, J. Noncommut. Geom. 3 (2009), no. 3, 377â417. MR 2511635, DOI 10.4171/JNCG/41
- RamĂłn Flores, Sanaz Pooya, and Alain Valette, $K$-homology and $K$-theory for the lamplighter groups of finite groups, Proc. Lond. Math. Soc. (3) 115 (2017), no. 6, 1207â1226. MR 3741850, DOI 10.1112/plms.12061
- Ćukasz Grabowski, On Turing dynamical systems and the Atiyah problem, Invent. Math. 198 (2014), no. 1, 27â69. MR 3260857, DOI 10.1007/s00222-013-0497-5
- Nigel Higson and Gennadi Kasparov, $E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001), no. 1, 23â74. MR 1821144, DOI 10.1007/s002220000118
- Vincent Lafforgue, La conjecture de Baum-Connes Ă coefficients pour les groupes hyperboliques, J. Noncommut. Geom. 6 (2012), no. 1, 1â197 (French, with English and French summaries). MR 2874956, DOI 10.4171/JNCG/89
- S. Pooya, K-theory and K-homology of the wreath products of finite with free groups, preprint, arXiv:1707.05984.
- Alain Valette, Introduction to the Baum-Connes conjecture, Lectures in Mathematics ETH ZĂŒrich, BirkhĂ€user Verlag, Basel, 2002. From notes taken by Indira Chatterji; With an appendix by Guido Mislin. MR 1907596, DOI 10.1007/978-3-0348-8187-6
Bibliographic Information
- Xin Li
- Affiliation: School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
- MR Author ID: 911893
- ORCID: 0000-0002-2243-3742
- Email: xin.li@qmul.ac.uk
- Received by editor(s): April 9, 2018
- Received by editor(s) in revised form: January 15, 2019
- Published electronically: June 10, 2019
- Communicated by: Adrian Ioana
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4371-4378
- MSC (2010): Primary 46L80
- DOI: https://doi.org/10.1090/proc/14619
- MathSciNet review: 4002549