Two solutions for a planar equation with combined nonlinearities and critical growth
HTML articles powered by AMS MathViewer
- by Marcelo F. Furtado
- Proc. Amer. Math. Soc. 147 (2019), 4397-4408
- DOI: https://doi.org/10.1090/proc/14677
- Published electronically: June 10, 2019
- PDF | Request permission
Abstract:
We prove the existence of two nonnegative nontrivial solutions for the equation \begin{equation*} -\Delta u -\frac {1}{2} (x\cdot \nabla u) = \lambda a(x)|u|^{q-2}u+f(u),\qquad x\in \mathbb {R}^2, \end{equation*} where $1<q<2$, $a$ is indefinite in sign, and the function $f(s)$ behaves like $e^{\alpha s^2}$ at infinity. The results hold for small values of the parameter $\lambda >0$.References
- Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 3, 393–413. MR 1079983
- C. O. Alves, Multiple positive solutions for equations involving critical Sobolev exponent in $\mathbf R^N$, Electron. J. Differential Equations (1997), No. 13, 10. MR 1461975
- Antonio Ambrosetti, Haïm Brezis, and Giovanna Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519–543. MR 1276168, DOI 10.1006/jfan.1994.1078
- A. Ambrosetti, J. Garcia Azorero, and I. Peral, Elliptic variational problems in $\textbf {R}^N$ with critical growth, J. Differential Equations 168 (2000), no. 1, 10–32. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 1 (Atlanta, GA/Lisbon, 1998). MR 1801341, DOI 10.1006/jdeq.2000.3875
- J. García Azorero and I. Peral Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), no. 3, 941–957. MR 1305954, DOI 10.1512/iumj.1994.43.43041
- D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\textbf {R}^2$, Comm. Partial Differential Equations 17 (1992), no. 3-4, 407–435. MR 1163431, DOI 10.1080/03605309208820848
- Pavel Drábek and Yin Xi Huang, Multiplicity of positive solutions for some quasilinear elliptic equation in $\textbf {R}^N$ with critical Sobolev exponent, J. Differential Equations 140 (1997), no. 1, 106–132. MR 1473856, DOI 10.1006/jdeq.1997.3306
- Djairo G. De Figueiredo, Jean-Pierre Gossez, and Pedro Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal. 199 (2003), no. 2, 452–467. MR 1971261, DOI 10.1016/S0022-1236(02)00060-5
- Djairo G. de Figueiredo, Jean-Pierre Gossez, and Pedro Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 2, 269–286. MR 2239277, DOI 10.4171/JEMS/52
- M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. 11 (1987), no. 10, 1103–1133. MR 913672, DOI 10.1016/0362-546X(87)90001-0
- D. G. de Figueiredo, O. H. Miyagaki, and B. Ruf, Elliptic equations in $\textbf {R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 139–153. MR 1386960, DOI 10.1007/BF01205003
- Djairo G. de Figueiredo, João Marcos do Ó, and Bernhard Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math. 55 (2002), no. 2, 135–152. MR 1865413, DOI 10.1002/cpa.10015
- Marcelo F. Furtado, Everaldo S. Medeiros, and Uberlandio B. Severo, A Trudinger-Moser inequality in a weighted Sobolev space and applications, Math. Nachr. 287 (2014), no. 11-12, 1255–1273. MR 3247015, DOI 10.1002/mana.201200315
- Marcelo F. Furtado, Everaldo S. Medeiros, and Uberlandio B. Severo, On a class of semilinear elliptic eigenvalue problems in $\Bbb {R}^2$, Proc. Edinb. Math. Soc. (2) 60 (2017), no. 1, 107–126. MR 3589843, DOI 10.1017/S0013091516000080
- Marcelo F. Furtado, Ricardo Ruviaro, and João Pablo P. da Silva, Two solutions for an elliptic equation with fast increasing weight and concave-convex nonlinearities, J. Math. Anal. Appl. 416 (2014), no. 2, 698–709. MR 3188733, DOI 10.1016/j.jmaa.2014.02.068
- Marcelo F. Furtado, João Pablo P. da Silva, and Bruno N. Souza, Elliptic equations with weight and combined nonlinearities, Adv. Nonlinear Stud. 16 (2016), no. 3, 509–517. MR 3518343, DOI 10.1515/ans-2015-5042
- Zhaoli Liu and Zhi-Qiang Wang, Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys. 56 (2005), no. 4, 609–629. MR 2185298, DOI 10.1007/s00033-005-3115-6
- J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077–1092. MR 301504, DOI 10.1512/iumj.1971.20.20101
- João Marcos B. do Ó, $N$-Laplacian equations in $\mathbf R^N$ with critical growth, Abstr. Appl. Anal. 2 (1997), no. 3-4, 301–315. MR 1704875, DOI 10.1155/S1085337597000419
- João C. N. Pádua, Elves A. B. Silva, and Sérgio H. M. Soares, Positive solutions of critical semilinear problems involving a sublinear term on the origin, Indiana Univ. Math. J. 55 (2006), no. 3, 1091–1111. MR 2244599, DOI 10.1512/iumj.2006.55.2688
- Francisco Odair de Paiva, Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity, J. Funct. Anal. 261 (2011), no. 9, 2569–2586. MR 2826406, DOI 10.1016/j.jfa.2011.07.002
- Bernhard Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\Bbb R^2$, J. Funct. Anal. 219 (2005), no. 2, 340–367. MR 2109256, DOI 10.1016/j.jfa.2004.06.013
- Elliot Tonkes, A semilinear elliptic equation with convex and concave nonlinearities, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 251–271. MR 1742223, DOI 10.12775/TMNA.1999.013
- Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. MR 0216286, DOI 10.1512/iumj.1968.17.17028
- Zhitao Zhang, Marta Calanchi, and Bernhard Ruf, Elliptic equations in $\Bbb R^2$ with one-sided exponential growth, Commun. Contemp. Math. 6 (2004), no. 6, 947–971. MR 2112476, DOI 10.1142/S0219199704001549
Bibliographic Information
- Marcelo F. Furtado
- Affiliation: Departamento de Matemática, Universidade de Brasília, 70910-900, Braília-Df, Brazil
- MR Author ID: 673056
- Email: mfurtado@unb.br
- Received by editor(s): January 23, 2019
- Published electronically: June 10, 2019
- Additional Notes: The author was partially supported by CNPq/Brazil and FAPDF/Brazil
- Communicated by: Joachim Krieger
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4397-4408
- MSC (2010): Primary 35J60; Secondary 35B33
- DOI: https://doi.org/10.1090/proc/14677
- MathSciNet review: 4002551