## Krein–Rutman type property and exponential separation of a noncompact operator

HTML articles powered by AMS MathViewer

- by Lirui Feng and Jianhong Wu PDF
- Proc. Amer. Math. Soc.
**147**(2019), 4771-4780 Request permission

## Abstract:

We investigate exponentially separated property for a noncompact linear operator $T$ on a Banach space. We obtain the relationship between exponentially separated property and the well-known Krein–Rutman type property for a noncompact operator. Under the assumption of an essential spectral gap, we prove that any $u$-bounded operator $T$ with a reproducing cone admits the exponentially separated property and, hence, is of Krein–Rutman type automatically. We also establish an amenable sufficient condition for the exponentially separated property of some degenerate linear parabolic systems.## References

- Fritz Colonius and Wolfgang Kliemann,
*The dynamics of control*, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000. With an appendix by Lars Grüne. MR**1752730**, DOI 10.1007/978-1-4612-1350-5 - Shui-Nee Chow and Hugo Leiva,
*Two definitions of exponential dichotomy for skew-product semiflow in Banach spaces*, Proc. Amer. Math. Soc.**124**(1996), no. 4, 1071–1081. MR**1340377**, DOI 10.1090/S0002-9939-96-03433-8 - Klaus Deimling,
*Nonlinear functional analysis*, Springer-Verlag, Berlin, 1985. MR**787404**, DOI 10.1007/978-3-662-00547-7 - D. E. Edmunds and W. D. Evans,
*Spectral theory and differential operators*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR**929030** - Juraj Húska, Peter Poláčik, and Mikhail V. Safonov,
*Harnack inequalities, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**24**(2007), no. 5, 711–739 (English, with English and French summaries). MR**2348049**, DOI 10.1016/j.anihpc.2006.04.006 - Jack K. Hale,
*Asymptotic behavior of dissipative systems*, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR**941371**, DOI 10.1090/surv/025 - M. G. Kreĭn and M. A. Rutman,
*Linear operators leaving invariant a cone in a Banach space*, Uspehi Matem. Nauk (N. S.)**3**(1948), no. 1(23), 3–95 (Russian). MR**0027128** - M. A. Krasnosel′skij, Je. A. Lifshits, and A. V. Sobolev,
*Positive linear systems*, Sigma Series in Applied Mathematics, vol. 5, Heldermann Verlag, Berlin, 1989. The method of positive operators; Translated from the Russian by Jürgen Appell. MR**1038527** - Y. Latushkin, T. Randolph, and R. Schnaubelt,
*Exponential dichotomy and mild solutions of nonautonomous equations in Banach spaces*, J. Dynam. Differential Equations**10**(1998), no. 3, 489–510. MR**1646630**, DOI 10.1023/A:1022609414870 - Janusz Mierczyński and Wenxian Shen,
*Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations*, J. Differential Equations**191**(2003), no. 1, 175–205. MR**1973287**, DOI 10.1016/S0022-0396(03)00016-0 - Janusz Mierczyński and Wenxian Shen,
*Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. I. General theory*, Trans. Amer. Math. Soc.**365**(2013), no. 10, 5329–5365. MR**3074376**, DOI 10.1090/S0002-9947-2013-05814-X - Janusz Mierczyński and Wenxian Shen,
*Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. Finite-dimensional systems*, J. Math. Anal. Appl.**404**(2013), no. 2, 438–458. MR**3045185**, DOI 10.1016/j.jmaa.2013.03.039 - Gerard J. Murphy,
*$C^*$-algebras and operator theory*, Academic Press, Inc., Boston, MA, 1990. MR**1074574** - Roger D. Nussbaum,
*Eigenvectors of nonlinear positive operators and the linear Kreĭn-Rutman theorem*, Fixed point theory (Sherbrooke, Que., 1980) Lecture Notes in Math., vol. 886, Springer, Berlin-New York, 1981, pp. 309–330. MR**643014** - John Mallet-Paret and Roger D. Nussbaum,
*Tensor products, positive linear operators, and delay-differential equations*, J. Dynam. Differential Equations**25**(2013), no. 4, 843–905. MR**3138150**, DOI 10.1007/s10884-013-9318-1 - Kenneth J. Palmer,
*Exponential dichotomy and expansivity*, Ann. Mat. Pura Appl. (4)**185**(2006), no. suppl., S171–S185. MR**2187759**, DOI 10.1007/s10231-004-0141-5 - Kenneth J. Palmer,
*A perturbation theorem for exponential dichotomies*, Proc. Roy. Soc. Edinburgh Sect. A**106**(1987), no. 1-2, 25–37. MR**899938**, DOI 10.1017/S0308210500018175 - P. Poláčik and Ignác Tereščák,
*Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations*, J. Dynam. Differential Equations**5**(1993), no. 2, 279–303. MR**1223450**, DOI 10.1007/BF01053163 - Enrique R. Pujals,
*From hyperbolicity to dominated splitting*, Partially hyperbolic dynamics, laminations, and Teichmüller flow, Fields Inst. Commun., vol. 51, Amer. Math. Soc., Providence, RI, 2007, pp. 89–102. MR**2388691** - Enrique R. Pujals and Martín Sambarino,
*On the dynamics of dominated splitting*, Ann. of Math. (2)**169**(2009), no. 3, 675–739. MR**2480616**, DOI 10.4007/annals.2009.169.675 - Wendi Wang and Xiao-Qiang Zhao,
*Basic reproduction numbers for reaction-diffusion epidemic models*, SIAM J. Appl. Dyn. Syst.**11**(2012), no. 4, 1652–1673. MR**3032845**, DOI 10.1137/120872942 - Xiao-Qiang Zhao,
*Dynamical systems in population biology*, 2nd ed., CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, 2017. MR**3643081**, DOI 10.1007/978-3-319-56433-3

## Additional Information

**Lirui Feng**- Affiliation: Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada M3J1P3
- MR Author ID: 1193629
- Email: flrui18@yorku.ca
**Jianhong Wu**- Affiliation: Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada M3J1P3
- MR Author ID: 226643
- Email: wujh@mathstat.yorku.ca
- Received by editor(s): December 6, 2018
- Received by editor(s) in revised form: December 6, 2018, and January 8, 2019
- Published electronically: July 30, 2019
- Additional Notes: Both authors were supported by the NSERC and the NSERC-IRC Program

The second author was supported by NSERC 105588-2011 - Communicated by: Wenxian Shen
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 4771-4780 - MSC (2000): Primary 37C35, 37C65, 37D30; Secondary 35K57, 35K65
- DOI: https://doi.org/10.1090/proc/14556
- MathSciNet review: 4011511