## Uniformly non–improvable Dirichlet set via continued fractions

HTML articles powered by AMS MathViewer

- by Lingling Huang and Jun Wu PDF
- Proc. Amer. Math. Soc.
**147**(2019), 4617-4624 Request permission

## Abstract:

Let $[a_1(x),a_2(x),\ldots ]$ be the continued fraction expansion of $x\in [0,1)$ and let $q_n(x)$ be the denominator of the $n$th convergent. Recently, Hussain-Kleinbock-Wadleigh-Wang (2018) showed that for any $\tau \ge 0,$ the set \begin{equation*} D^{c}(\tau )=\Big \{x\in [0,1): \limsup \limits _{n\rightarrow \infty }\frac {\log \big (a_n(x)a_{n+1}(x)\big )}{\log q_n(x)}\ge \tau \Big \} \end{equation*} is of Hausdorff dimension $\frac {2}{\tau +2}.$ In this note, we study the Hausdorff dimension of the set \begin{align*} &F(\tau )=\Big \{x\in [0,1): \lim \limits _{n\rightarrow \infty }\frac {\log \big (a_n(x)a_{n+1}(x)\big )}{\log q_n(x)}=\tau \Big \}. \end{align*} It is proved that the set $F(\tau )$ has Hausdorff dimension $1$ or $\frac {2}{\tau +\sqrt {\tau ^2+4}+2}$ according as $\tau =0$ or $\tau >0.$## References

- A. Bakhtawar, P. Bos, and M. Hussain,
*The sets of Dirichlet non-improvable numbers vs well-approximable numbers*, arXiv:1806.00618, 2018. - Kenneth Falconer,
*Fractal geometry*, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003. Mathematical foundations and applications. MR**2118797**, DOI 10.1002/0470013850 - Ai-Hua Fan, Ling-Min Liao, Bao-Wei Wang, and Jun Wu,
*On Khintchine exponents and Lyapunov exponents of continued fractions*, Ergodic Theory Dynam. Systems**29**(2009), no. 1, 73–109. MR**2470627**, DOI 10.1017/S0143385708000138 - I. J. Good,
*The fractional dimensional theory of continued fractions*, Proc. Cambridge Philos. Soc.**37**(1941), 199–228. MR**4878**, DOI 10.1017/s030500410002171x - Andrew Haas,
*The relative growth rate for partial quotients*, New York J. Math.**14**(2008), 139–143. MR**2383588** - Mumtaz Hussain, Dmitry Kleinbock, Nick Wadleigh, and Bao-Wei Wang,
*Hausdorff measure of sets of Dirichlet non-improvable numbers*, Mathematika**64**(2018), no. 2, 502–518. MR**3798609**, DOI 10.1112/S0025579318000074 - Marius Iosifescu and Cor Kraaikamp,
*Metrical theory of continued fractions*, Mathematics and its Applications, vol. 547, Kluwer Academic Publishers, Dordrecht, 2002. MR**1960327**, DOI 10.1007/978-94-015-9940-5 - I. Jarník,
*Zur metrischen theorie der diophantischen approximationen*, Prace Mat. Fiz.**36**(1928), 91–106. - A. Ya. Khinchin,
*Continued fractions*, University of Chicago Press, Chicago, Ill.-London, 1964. MR**0161833** - Dmitry Kleinbock and Nick Wadleigh,
*A zero-one law for improvements to Dirichlet’s Theorem*, Proc. Amer. Math. Soc.**146**(2018), no. 5, 1833–1844. MR**3767339**, DOI 10.1090/proc/13685 - Tomasz Łuczak,
*On the fractional dimension of sets of continued fractions*, Mathematika**44**(1997), no. 1, 50–53. MR**1464375**, DOI 10.1112/S0025579300011955 - Yu Sun and Jun Wu,
*A dimensional result in continued fractions*, Int. J. Number Theory**10**(2014), no. 4, 849–857. MR**3208862**, DOI 10.1142/S179304211450002X - Bao-Wei Wang and Jun Wu,
*Hausdorff dimension of certain sets arising in continued fraction expansions*, Adv. Math.**218**(2008), no. 5, 1319–1339. MR**2419924**, DOI 10.1016/j.aim.2008.03.006 - Zhenliang Zhang and Meiying Lü,
*The relative growth rate of the largest partial quotient to the sum of partial quotients in continued fraction expansions*, J. Number Theory**163**(2016), 482–492. MR**3459583**, DOI 10.1016/j.jnt.2015.11.027

## Additional Information

**Lingling Huang**- Affiliation: Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- MR Author ID: 1248934
- Email: huanglingling@hust.edu.cn
**Jun Wu**- Affiliation: Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Email: jun.wu@hust.edu.cn
- Received by editor(s): July 30, 2018
- Received by editor(s) in revised form: February 8, 2019
- Published electronically: July 9, 2019
- Additional Notes: This work was partially supported by NSFC 11831007

The second author is the corresponding author - Communicated by: Nimish Shah
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 4617-4624 - MSC (2010): Primary 11K50, 11J70, 28A80
- DOI: https://doi.org/10.1090/proc/14587
- MathSciNet review: 4011499