Hankel-total positivity of some sequences
HTML articles powered by AMS MathViewer
- by Bao-Xuan Zhu
- Proc. Amer. Math. Soc. 147 (2019), 4673-4686
- DOI: https://doi.org/10.1090/proc/14599
- Published electronically: May 29, 2019
- PDF | Request permission
Abstract:
The aim of this paper is to develop analytic techniques to deal with Hankel-total positivity of sequences.
We show two nonlinear operators preserving Stieltjes moment property of sequences. They actually both extend a result of Wang and Zhu that if $(a_n)_{n\geq 0}$ is a Stieltjes moment sequence, then so is $(a_{n+2}a_{n}-a^2_{n+1})_{n\geq 0}$. Using complete monotonicity of functions, we also prove Stieltjes moment properties of the sequences $\left ( \frac {\Gamma (n_{0}+ai+1)}{{\Gamma (k_{0}+bi+1)} {\Gamma ((n_0-k_0)+(a-b)i+1)}}\prod _{j=0}^m\frac {1}{d_ji+e_j}\right )_{i\geq 0}$ and $\left (\sum _{k\ge 0}\frac {\alpha _k}{\lambda _{k}^{n}}\right )_{n\geq 0}$. Particularly in a new unified manner our results imply the Stieltjes moment properties of binomial coefficients $\binom {pn+r-1}{n}$ and Fuss-Catalan numbers $\frac {r}{pn+r}\binom {pn+r}{n}$ proved by Mlotkowski, Penson, and Zyczkowski, and Liu and Pego, respectively, and also extend some results for log-convexity of sequences proved by Chen-Guo-Wang, Su-Wang, Yu, and Wang-Zhu, respectively.
References
- N. Alexeev, F. Götze, and A. Tikhomirov, Asymptotic distribution of singular values of powers of random matrices, Lith. Math. J. 50 (2010), no. 2, 121–132. MR 2653641, DOI 10.1007/s10986-010-9074-4
- Horst Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373–389. MR 1388887, DOI 10.1090/S0025-5718-97-00807-7
- Tewodros Amdeberhan, Victor H. Moll, and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana polynomials, Online J. Anal. Comb. 8 (2013), 25. MR 3080492
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- T. Banica, S. T. Belinschi, M. Capitaine, and B. Collins, Free Bessel laws, Canad. J. Math. 63 (2011), no. 1, 3–37. MR 2779129, DOI 10.4153/CJM-2010-060-6
- Christian Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), no. 4, 433–439. MR 2112748, DOI 10.1007/s00009-004-0022-6
- Petter Brändén, Iterated sequences and the geometry of zeros, J. Reine Angew. Math. 658 (2011), 115–131. MR 2831515, DOI 10.1515/CRELLE.2011.063
- Petter Brändén, On linear transformations preserving the Pólya frequency property, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3697–3716. MR 2218995, DOI 10.1090/S0002-9947-06-03856-6
- Joaquin Bustoz and Mourad E. H. Ismail, On gamma function inequalities, Math. Comp. 47 (1986), no. 176, 659–667. MR 856710, DOI 10.1090/S0025-5718-1986-0856710-6
- William Y. C. Chen, Jeremy J. F. Guo, and Larry X. W. Wang, Zeta functions and the log behaviour of combinatorial sequences, Proc. Edinb. Math. Soc. (2) 58 (2015), no. 3, 637–651. MR 3391365, DOI 10.1017/S0013091515000036
- William Y. C. Chen and Ernest X. W. Xia, The 2-log-convexity of the Apéry numbers, Proc. Amer. Math. Soc. 139 (2011), no. 2, 391–400. MR 2736323, DOI 10.1090/S0002-9939-2010-10575-0
- Benoît Collins, Ion Nechita, and Karol Życzkowski, Random graph states, maximal flow and Fuss-Catalan distributions, J. Phys. A 43 (2010), no. 27, 275303, 39. MR 2658283, DOI 10.1088/1751-8113/43/27/275303
- S. Fisk, Questions about determinants and polynomials, available at arXiv:0808.1850 (2008).
- Peter J. Forrester and Dang-Zheng Liu, Raney distributions and random matrix theory, J. Stat. Phys. 158 (2015), no. 5, 1051–1082. MR 3313617, DOI 10.1007/s10955-014-1150-4
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994. A foundation for computer science. MR 1397498
- Arcadii Z. Grinshpan and Mourad E. H. Ismail, Completely monotonic functions involving the gamma and $q$-gamma functions, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1153–1160. MR 2196051, DOI 10.1090/S0002-9939-05-08050-0
- Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif., 1968. MR 0230102
- D. B. Karp and E. G. Prilepkina, Completely monotonic gamma ratio and infinitely divisible $H$-function of Fox, Comput. Methods Funct. Theory 16 (2016), no. 1, 135–153. MR 3460546, DOI 10.1007/s40315-015-0128-9
- Michel Lassalle, Two integer sequences related to Catalan numbers, J. Combin. Theory Ser. A 119 (2012), no. 4, 923–935. MR 2881235, DOI 10.1016/j.jcta.2012.01.002
- Lee Lorch and Leo Moser, A remark on completely monotonic sequences, with an application to summability, Canad. Math. Bull. 6 (1963), 171–173. MR 156127, DOI 10.4153/CMB-1963-016-3
- Jian-Guo Liu and Robert L. Pego, On generating functions of Hausdorff moment sequences, Trans. Amer. Math. Soc. 368 (2016), no. 12, 8499–8518. MR 3551579, DOI 10.1090/tran/6618
- Lily L. Liu and Yi Wang, A unified approach to polynomial sequences with only real zeros, Adv. in Appl. Math. 38 (2007), no. 4, 542–560. MR 2311051, DOI 10.1016/j.aam.2006.02.003
- Dang-Zheng Liu, Chunwei Song, and Zheng-Dong Wang, On explicit probability densities associated with Fuss-Catalan numbers, Proc. Amer. Math. Soc. 139 (2011), no. 10, 3735–3738. MR 2813403, DOI 10.1090/S0002-9939-2011-11015-3
- Peter R. W. McNamara and Bruce E. Sagan, Infinite log-concavity: developments and conjectures, Adv. in Appl. Math. 44 (2010), no. 1, 1–15. MR 2552652, DOI 10.1016/j.aam.2009.03.001
- Wojciech Młotkowski, Fuss-Catalan numbers in noncommutative probability, Doc. Math. 15 (2010), 939–955. MR 2745687, DOI 10.1016/j.cnsns.2009.05.004
- Wojciech Młotkowski and Karol A. Penson, Probability distributions with binomial moments, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17 (2014), no. 2, 1450014, 32. MR 3212684, DOI 10.1142/S0219025714500143
- Wojciech Młotkowski, Karol A. Penson, and Karol Życzkowski, Densities of the Raney distributions, Doc. Math. 18 (2013), 1573–1596. MR 3158243, DOI 10.4171/dm/437
- Alexandru Nica and Roland Speicher, Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, vol. 335, Cambridge University Press, Cambridge, 2006. MR 2266879, DOI 10.1017/CBO9780511735127
- Allan Pinkus, Totally positive matrices, Cambridge Tracts in Mathematics, vol. 181, Cambridge University Press, Cambridge, 2010. MR 2584277
- Carla D. Savage and Mirkó Visontai, The $\mathbf {s}$-Eulerian polynomials have only real roots, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1441–1466. MR 3280050, DOI 10.1090/S0002-9947-2014-06256-9
- René L. Schilling, Renming Song, and Zoran Vondraček, Bernstein functions, 2nd ed., De Gruyter Studies in Mathematics, vol. 37, Walter de Gruyter & Co., Berlin, 2012. Theory and applications. MR 2978140, DOI 10.1515/9783110269338
- J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical Surveys, Vol. I, American Mathematical Society, New York, 1943. MR 0008438, DOI 10.1090/surv/001
- N. J. A. Sloane, The on-line encyclopedia of integer sequences, available at http://oeis.org/
- A. D. Sokal, Coefficientwise total positivity (via continued fractions) for some Hankel matrices of combinatorial polynomials, in preparation.
- Xun-Tuan Su and Yi Wang, On unimodality problems in Pascal’s triangle, Electron. J. Combin. 15 (2008), no. 1, Research Paper 113, 12. MR 2438585, DOI 10.37236/837
- Richard P. Stanley, Catalan numbers, Cambridge University Press, New York, 2015. MR 3467982, DOI 10.1017/CBO9781139871495
- Arthur L. B. Yang, Three problems related to the Bessel functions of the first kind, Workshop on Combinatorial Conference at Shanghai Jiaotong University, Nov. 2016, unpublished.
- Rintaro Yoshida, On some questions of Fisk and Brändén, Complex Var. Elliptic Equ. 58 (2013), no. 7, 933–945. MR 3170673, DOI 10.1080/17476933.2011.603418
- Yaming Yu, Confirming two conjectures of Su and Wang on binomial coefficients, Adv. in Appl. Math. 43 (2009), no. 4, 317–322. MR 2553542, DOI 10.1016/j.aam.2008.12.004
- Yi Wang and Yeong-Nan Yeh, Polynomials with real zeros and Pólya frequency sequences, J. Combin. Theory Ser. A 109 (2005), no. 1, 63–74. MR 2110198, DOI 10.1016/j.jcta.2004.07.008
- Yi Wang and BaoXuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, Sci. China Math. 57 (2014), no. 11, 2429–2435. MR 3266503, DOI 10.1007/s11425-014-4851-x
- Yi Wang and Bao-Xuan Zhu, Log-convex and Stieltjes moment sequences, Adv. in Appl. Math. 81 (2016), 115–127. MR 3551665, DOI 10.1016/j.aam.2016.06.008
- D. V. Widder, Necessary and sufficient conditions for the representation of a function as a Laplace integral, Trans. Amer. Math. Soc. 33 (1931), no. 4, 851–892. MR 1501621, DOI 10.1090/S0002-9947-1931-1501621-6
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
- Jet Wimp, Sequence transformations and their applications, Mathematics in Science and Engineering, vol. 154, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 615250
Bibliographic Information
- Bao-Xuan Zhu
- Affiliation: School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, People’s Republic of China
- MR Author ID: 902213
- Email: bxzhu@jsnu.edu.cn
- Received by editor(s): September 17, 2018
- Received by editor(s) in revised form: February 19, 2019, and February 25, 2019
- Published electronically: May 29, 2019
- Additional Notes: The author was partially supported by the National Natural Science Foundation of China (No. 11571150).
- Communicated by: Mourad Ismail
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4673-4686
- MSC (2010): Primary 11B83, 15B05, 33B15, 05A20
- DOI: https://doi.org/10.1090/proc/14599
- MathSciNet review: 4011504