## Mixed ray transform on simple $2$-dimensional Riemannian manifolds

HTML articles powered by AMS MathViewer

- by Maarten V. de Hoop, Teemu Saksala and Jian Zhai PDF
- Proc. Amer. Math. Soc.
**147**(2019), 4901-4913 Request permission

## Abstract:

We characterize the kernel of the mixed ray transform on simple $2$-dimensional Riemannian manifolds, that is, on simple surfaces for tensors of any order.## References

- Lars V. Ahlfors,
*Conformality with respect to Riemannian metrics*, Ann. Acad. Sci. Fenn. Ser. A. I.**1955**(1955), no. 206, 22. MR**74855** - Yu. E. Anikonov and V. G. Romanov,
*On uniqueness of determination of a form of first degree by its integrals along geodesics*, J. Inverse Ill-Posed Probl.**5**(1997), no. 6, 487–490 (1998). MR**1623603**, DOI 10.1515/jiip.1997.5.6.487 - C. H. Chapman and R. G. Pratt,
*Traveltime tomography in anisotropic media – I. Theory*, Geophys. J. Internat.**109**(1992), no. 1, 1–19. - Nurlan S. Dairbekov,
*Integral geometry problem for nontrapping manifolds*, Inverse Problems**22**(2006), no. 2, 431–445. MR**2216407**, DOI 10.1088/0266-5611/22/2/003 - Sean Holman,
*Generic local uniqueness and stability in polarization tomography*, J. Geom. Anal.**23**(2013), no. 1, 229–269. MR**3010279**, DOI 10.1007/s12220-011-9245-5 - Venkateswaran P Krishnan, Rohit Kumar Mishra, and François Monard,
*On s-injective and injective ray transforms of tensor fields on surfaces*, Journal of Inverse and Ill-posed Problems (to appear), preprint arXiv:1807.10730 (2018). - R. G. Mukhometov,
*On the problem of integral geometry*(Russian), Math. problems of geophysics, Akad. Nauk SSSR, Sibirsk., Otdel., Vychisl., Tsentr, Novosibirsk**6**(1975). - R. G. Muhometov,
*On a problem of reconstructing Riemannian metrics*, Sibirsk. Mat. Zh.**22**(1981), no. 3, 119–135, 237 (Russian). MR**621466** - Roman Novikov and Vladimir Sharafutdinov,
*On the problem of polarization tomography. I*, Inverse Problems**23**(2007), no. 3, 1229–1257. MR**2329942**, DOI 10.1088/0266-5611/23/3/023 - Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann,
*Tensor tomography on surfaces*, Invent. Math.**193**(2013), no. 1, 229–247. MR**3069117**, DOI 10.1007/s00222-012-0432-1 - G. P. Paternain, M. Salo, G. Uhlmann, and H. Zhou,
*The geodesic x-ray transform with matrix weights*, preprint, arXiv:1605.07894**2**, 2016. - L. Pestov,
*Well-posedness questions of the ray tomography problems*(Russian), Siberian Science Press, Novosibirsk, 2003. - L. N. Pestov and V. A. Sharafutdinov,
*Integral geometry of tensor fields on a manifold of negative curvature*, Sibirsk. Mat. Zh.**29**(1988), no. 3, 114–130, 221 (Russian); English transl., Siberian Math. J.**29**(1988), no. 3, 427–441 (1989). MR**953028**, DOI 10.1007/BF00969652 - Leonid Pestov and Gunther Uhlmann,
*Two dimensional compact simple Riemannian manifolds are boundary distance rigid*, Ann. of Math. (2)**161**(2005), no. 2, 1093–1110. MR**2153407**, DOI 10.4007/annals.2005.161.1093 - V. A. Sharafutdinov,
*Integral geometry of tensor fields*, Inverse and Ill-posed Problems Series, VSP, Utrecht, 1994. MR**1374572**, DOI 10.1515/9783110900095 - Vladimir Sharafutdinov,
*Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds*, J. Geom. Anal.**17**(2007), no. 1, 147–187. MR**2302878**, DOI 10.1007/BF02922087 - Plamen Stefanov and Gunther Uhlmann,
*Boundary rigidity and stability for generic simple metrics*, J. Amer. Math. Soc.**18**(2005), no. 4, 975–1003. MR**2163868**, DOI 10.1090/S0894-0347-05-00494-7 - Plamen Stefanov and Gunther Uhlmann,
*Stability estimates for the X-ray transform of tensor fields and boundary rigidity*, Duke Math. J.**123**(2004), no. 3, 445–467. MR**2068966**, DOI 10.1215/S0012-7094-04-12332-2 - Plamen Stefanov, Gunther Uhlmann, and András Vasy,
*Inverting the local geodesic X-ray transform on tensors*, J. Anal. Math.**136**(2018), no. 1, 151–208. MR**3892472**, DOI 10.1007/s11854-018-0058-3 - John Sylvester,
*An anisotropic inverse boundary value problem*, Comm. Pure Appl. Math.**43**(1990), no. 2, 201–232. MR**1038142**, DOI 10.1002/cpa.3160430203 - Gunther Uhlmann and András Vasy,
*The inverse problem for the local geodesic ray transform*, Invent. Math.**205**(2016), no. 1, 83–120. MR**3514959**, DOI 10.1007/s00222-015-0631-7

## Additional Information

**Maarten V. de Hoop**- Affiliation: Simons Chair in Computational and Applied Mathematics and Earth Science, Rice University, Houston, Texas 77005
- MR Author ID: 311568
- Email: mdehoop@rice.edu
**Teemu Saksala**- Affiliation: Department of Computational and Applied Mathematics, Rice University, Houston, Texas, 77005
- MR Author ID: 1277799
- Email: teemu.saksala@rice.edu
**Jian Zhai**- Affiliation: Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
- MR Author ID: 1206056
- ORCID: 0000-0002-2374-8922
- Received by editor(s): August 7, 2018
- Received by editor(s) in revised form: February 2, 2019, February 21, 2019, and February 22, 2019
- Published electronically: June 10, 2019
- Additional Notes: The work of the first author was partially supported by the Simons Foundation under the MATH + X program, the National Science Foundation under grant DMS-1815143, and by members of the Geo-Mathematical Imaging Group at Rice University.

The second author was supported by the Simons Foundation under the MATH + X program.

The third author was supported by the Simons Foundation under the MATH + X program. - Communicated by: Michael Hitrik
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 4901-4913 - MSC (2010): Primary 44A12, 53A35, 53C22, 58C99, 58J90
- DOI: https://doi.org/10.1090/proc/14601
- MathSciNet review: 4011522