On closed mappings of $\sigma$-compact spaces and dimension
HTML articles powered by AMS MathViewer
- by Elżbieta Pol and Roman Pol
- Proc. Amer. Math. Soc. 147 (2019), 5009-5017
- DOI: https://doi.org/10.1090/proc/14603
- Published electronically: June 10, 2019
- PDF | Request permission
Abstract:
A remainder of the Hilbert space $l_{2}$ is a space homeomorphic to $Z \setminus l_{2}$, where $Z$ is a metrizable compact extension of $l_{2}$, with $l_{2}$ dense in $Z$. We prove that for any remainder $K$ of $l_{2}$, every non-one-point closed image of $K$ contains either a compact set with no transfinite dimension or compact sets of arbitrarily high inductive transfinite dimension $\mathrm {ind}$. We shall also construct for each natural $n$ a $\sigma$-compact metrizable $n$-dimensional space whose image under any non-constant closed map has dimension at least $n$ and analogous examples for the transfinite inductive dimension $\mathrm {ind}$ (this provides a rather strong negative solution of a problem in [Dissertationes Math. (Rozprawy Mat.) 216 (1983), pp. 1–41]).References
- J. M. Aarts and T. Nishiura, Dimension and extensions, North-Holland Mathematical Library, vol. 48, North-Holland Publishing Co., Amsterdam, 1993. MR 1206002
- Philip L. Bowers, Fake boundary sets in the Hilbert cube, Proc. Amer. Math. Soc. 93 (1985), no. 1, 121–127. MR 766541, DOI 10.1090/S0002-9939-1985-0766541-4
- Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58], PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0478168
- D. W. Curtis, Boundary sets in the Hilbert cube, Topology Appl. 20 (1985), no. 3, 201–221. MR 804034, DOI 10.1016/0166-8641(85)90089-6
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- Ryszard Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics, vol. 10, Heldermann Verlag, Lemgo, 1995. MR 1363947
- Ryszard Engelking and Elżbieta Pol, Countable-dimensional spaces: a survey, Dissertationes Math. (Rozprawy Mat.) 216 (1983), 41. MR 722011
- James P. Henderson and John J. Walsh, Examples of cell-like decompositions of the infinite-dimensional manifolds $\sigma$ and $\Sigma$, Topology Appl. 16 (1983), no. 2, 143–154. MR 712860, DOI 10.1016/0166-8641(83)90014-7
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323, DOI 10.1090/surv/012
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- K. Kuratowski and W. Sierpiński, Les fonctions de class 1 et les ensembles convexes punctiformes, Fund. Math. 3 (1922), 303–313.
- E. Michael, $J$-spaces, Topology Appl. 102 (2000), no. 3, 315–339. MR 1745451, DOI 10.1016/S0166-8641(99)00237-0
- Jan van Mill, A boundary set for the Hilbert cube containing no arcs, Fund. Math. 118 (1983), no. 2, 93–102. MR 732657, DOI 10.4064/fm-118-2-93-102
- Jan van Mill, The infinite-dimensional topology of function spaces, North-Holland Mathematical Library, vol. 64, North-Holland Publishing Co., Amsterdam, 2001. MR 1851014
- Jun-iti Nagata, Modern dimension theory, Revised edition, Sigma Series in Pure Mathematics, vol. 2, Heldermann Verlag, Berlin, 1983. MR 715431
- Elżbieta Pol, Remark on perfect images of the space $K_{\omega }$, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 9-10, 495–501 (1981) (English, with Russian summary). MR 629024
- Elżbieta Pol and Roman Pol, On isometric embeddings and continuous maps onto the irrationals, Monatsh. Math. 186 (2018), no. 2, 337–344. MR 3808658, DOI 10.1007/s00605-018-1157-z
- Elżbieta Pol and Roman Pol, Splitting cubes into two Borel punctiform sets, Houston J. Math. 44 (2018), no. 3, 1019–1027. MR 3879987
- Roman Pol, On classification of weakly infinite-dimensional compacta, Fund. Math. 116 (1983), no. 3, 169–188. MR 716218, DOI 10.4064/fm-116-3-169-188
- Roman Pol, Countable-dimensional universal sets, Trans. Amer. Math. Soc. 297 (1986), no. 1, 255–268. MR 849478, DOI 10.1090/S0002-9947-1986-0849478-7
- Yu. M. Smirnov, On universal spaces for certain classes of infinite dimensional spaces, Amer. Math. Soc. Transl. (2) 21 (1962), 21–33. MR 0150729, DOI 10.1090/trans2/021/02
Bibliographic Information
- Elżbieta Pol
- Affiliation: Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
- Email: E.Pol@mimuw.edu.pl
- Roman Pol
- Affiliation: Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
- Email: R.Pol@mimuw.edu.pl
- Received by editor(s): February 12, 2018
- Received by editor(s) in revised form: February 24, 2019
- Published electronically: June 10, 2019
- Communicated by: Ken Bromberg
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 5009-5017
- MSC (2010): Primary 54E40, 54F45, 57N20; Secondary 54D40, 54H05
- DOI: https://doi.org/10.1090/proc/14603
- MathSciNet review: 4011532