A positive lower bound for $\liminf _{N\to \infty } \prod _{r=1}^N \left | 2\sin \pi r \varphi \right |$
HTML articles powered by AMS MathViewer
- by Sigrid Grepstad, Lisa Kaltenböck and Mario Neumüller
- Proc. Amer. Math. Soc. 147 (2019), 4863-4876
- DOI: https://doi.org/10.1090/proc/14611
- Published electronically: May 17, 2019
- PDF | Request permission
Abstract:
Nearly 60 years ago, Erdős and Szekeres raised the question of whether \begin{equation*} \liminf _{N\to \infty } \prod _{r=1}^N \left | 2\sin \pi r \alpha \right | =0 \end{equation*} for all irrationals $\alpha$. Despite its simple formulation, the question has remained unanswered. It was shown by Lubinsky in 1999 that the answer is yes if $\alpha$ has unbounded continued fraction coefficients, and he suggested that the answer is yes in general. However, we show in this paper that for the golden ratio $\varphi =(\sqrt {5}-1)/2$, \begin{equation*} \liminf _{N\to \infty } \prod _{r=1}^N \left | 2\sin \pi r \varphi \right | >0 , \end{equation*} providing a negative answer to this long-standing open problem.References
- Christoph Aistleitner, Gerhard Larcher, Friedrich Pillichshammer, Sumaia Saad Eddin, and Robert F. Tichy, On Weyl products and uniform distribution modulo one, Monatsh. Math. 185 (2018), no. 3, 365–395. MR 3767725, DOI 10.1007/s00605-017-1100-8
- Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, Cambridge, 2003. Theory, applications, generalizations. MR 1997038, DOI 10.1017/CBO9780511546563
- H. Awata, S. Hirano, M. Shigemori, The partition function of ABJ theory, Prog. Theoret. Exp. Phys. 5 (2013).
- P. Erdős and G. Szekeres, On the product $\Pi ^n_{k=1}(1-z^ak)$, Acad. Serbe Sci. Publ. Inst. Math. 13 (1959), 29–34. MR 126425
- Celso Grebogi, Edward Ott, Steven Pelikan, and James A. Yorke, Strange attractors that are not chaotic, Phys. D 13 (1984), no. 1-2, 261–268. MR 775290, DOI 10.1016/0167-2789(84)90282-3
- Sigrid Grepstad and Mario Neumüller, Asymptotic behaviour of the Sudler product of sines for quadratic irrationals, J. Math. Anal. Appl. 465 (2018), no. 2, 928–960. MR 3809338, DOI 10.1016/j.jmaa.2018.05.045
- Oliver Knill and Folkert Tangerman, Self-similarity and growth in Birkhoff sums for the golden rotation, Nonlinearity 24 (2011), no. 11, 3115–3127. MR 2844830, DOI 10.1088/0951-7715/24/11/006
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- Sergey P. Kuznetsov, Arkady S. Pikovsky, and Ulrike Feudel, Birth of a strange nonchaotic attractor: a renormalization group analysis, Phys. Rev. E (3) 51 (1995), no. 3, R1629–R1632. MR 1385428, DOI 10.1103/PhysRevE.51.R1629
- D. S. Lubinsky, The size of $(q;q)_n$ for $q$ on the unit circle, J. Number Theory 76 (1999), no. 2, 217–247. MR 1684685, DOI 10.1006/jnth.1998.2365
- R. C. Mullin, Classroom Notes: Some Trigonometric Products, Amer. Math. Monthly 69 (1962), no. 3, 217–218. MR 1531589, DOI 10.2307/2311057
- Alexander Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Sem. Univ. Hamburg 1 (1922), no. 1, 77–98 (German). MR 3069389, DOI 10.1007/BF02940581
- Andrew M. Rockett and Peter Szüsz, Continued fractions, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. MR 1188878, DOI 10.1142/1725
- C. Sudler Jr., An estimate for a restricted partition function, Quart. J. Math. Oxford Ser. (2) 15 (1964), 1–10. MR 163890, DOI 10.1093/qmath/15.1.1
- Paul Verschueren and Ben Mestel, Growth of the Sudler product of sines at the golden rotation number, J. Math. Anal. Appl. 433 (2016), no. 1, 200–226. MR 3388787, DOI 10.1016/j.jmaa.2015.06.014
- E. M. Wright, Proof of a conjecture of Sudler’s, Quart. J. Math. Oxford Ser. (2) 15 (1964), 11–15. MR 163891, DOI 10.1093/qmath/15.1.11
- E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179–182 (French, with English summary). MR 308032
Bibliographic Information
- Sigrid Grepstad
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- MR Author ID: 1047019
- Email: sigrid.grepstad@ntnu.no
- Lisa Kaltenböck
- Affiliation: Department of Financial Mathematics and Applied Number Theory, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria
- Email: lisa.kaltenboeck@jku.at
- Mario Neumüller
- Affiliation: Department of Financial Mathematics and Applied Number Theory, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria
- Email: mario.neumueller@jku.at
- Received by editor(s): October 8, 2018
- Received by editor(s) in revised form: February 14, 2019
- Published electronically: May 17, 2019
- Additional Notes: The first author was supported in part by Grant 275113 of the Research Council of Norway.
The second and third authors were funded by the Austrian Science Fund (FWF): Project F5507-N26 and Project F5509-N26, which were part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”. - Communicated by: Amanda Folsom
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 4863-4876
- MSC (2010): Primary 26D05, 41A60, 11B39; Secondary 11L15, 11K31
- DOI: https://doi.org/10.1090/proc/14611
- MathSciNet review: 4011519