## Gelfand-Kirillov dimension of cosemisimple Hopf algebras

HTML articles powered by AMS MathViewer

- by Alexandru Chirvasitu, Chelsea Walton and Xingting Wang PDF
- Proc. Amer. Math. Soc.
**147**(2019), 4665-4672 Request permission

## Abstract:

In this note, we compute the Gelfand-Kirillov dimension of cosemisimple Hopf algebras that arise as deformations of a linearly reductive algebraic group. Our work lies in a purely algebraic setting and generalizes results of Goodearl-Zhang (2007), of Banica-Vergnioux (2009), and of D’Andrea-Pinzari-Rossi (2017).## References

- Eiichi Abe,
*Hopf algebras*, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. MR**594432** - Teodor Banica,
*Representations of compact quantum groups and subfactors*, J. Reine Angew. Math.**509**(1999), 167–198. MR**1679171**, DOI 10.1515/crll.1999.037 - Teodor Banica and Roland Vergnioux,
*Growth estimates for discrete quantum groups*, Infin. Dimens. Anal. Quantum Probab. Relat. Top.**12**(2009), no. 2, 321–340. MR**2541400**, DOI 10.1142/S0219025709003677 - Julien Bichon,
*The representation category of the quantum group of a non-degenerate bilinear form*, Comm. Algebra**31**(2003), no. 10, 4831–4851. MR**1998031**, DOI 10.1081/AGB-120023135 - Ken A. Brown and Ken R. Goodearl,
*Lectures on algebraic quantum groups*, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002. MR**1898492**, DOI 10.1007/978-3-0348-8205-7 - P. S. Chakraborty and B. Saurabh,
*Gelfand-Kirillov dimension of the algebra of regular functions on quantum groups*, Preprint available at http://arxiv.org/pdf/1709.09540. 2017. - Vyjayanthi Chari and Andrew Pressley,
*A guide to quantum groups*, Cambridge University Press, Cambridge, 1995. Corrected reprint of the 1994 original. MR**1358358** - Alessandro D’Andrea, Claudia Pinzari, and Stefano Rossi,
*Polynomial growth of discrete quantum groups, topological dimension of the dual and $*$-regularity of the Fourier algebra*, Ann. Inst. Fourier (Grenoble)**67**(2017), no. 5, 2003–2027 (English, with English and French summaries). MR**3732682**, DOI 10.5802/aif.3127 - A. Davydov, P. Etingof, and D. Nikshych,
*Autoequivalences of tensor categories attached to quantum groups at roots of $1$*, Preprint available at http://arxiv.org/pdf/1703.06543. 2017. - Corrado De Concini and Volodimir Lyubashenko,
*Quantum function algebra at roots of $1$*, Adv. Math.**108**(1994), no. 2, 205–262. MR**1296515**, DOI 10.1006/aima.1994.1071 - Michel Dubois-Violette and Guy Launer,
*The quantum group of a nondegenerate bilinear form*, Phys. Lett. B**245**(1990), no. 2, 175–177. MR**1068703**, DOI 10.1016/0370-2693(90)90129-T - K. R. Goodearl and J. J. Zhang,
*Homological properties of quantized coordinate rings of semisimple groups*, Proc. Lond. Math. Soc. (3)**94**(2007), no. 3, 647–671. MR**2325315**, DOI 10.1112/plms/pdl022 - Dale Husemoller,
*Fibre bundles*, 3rd ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. MR**1249482**, DOI 10.1007/978-1-4757-2261-1 - Anatoli Klimyk and Konrad Schmüdgen,
*Quantum groups and their representations*, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR**1492989**, DOI 10.1007/978-3-642-60896-4 - Günter R. Krause and Thomas H. Lenagan,
*Growth of algebras and Gelfand-Kirillov dimension*, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR**1721834**, DOI 10.1090/gsm/022 - Susan Montgomery,
*Hopf algebras and their actions on rings*, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR**1243637**, DOI 10.1090/cbms/082 - Colin Mrozinski,
*Quantum groups of $\rm GL(2)$ representation type*, J. Noncommut. Geom.**8**(2014), no. 1, 107–140. MR**3275027**, DOI 10.4171/JNCG/150 - D. Mumford, J. Fogarty, and F. Kirwan,
*Geometric invariant theory*, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR**1304906**, DOI 10.1007/978-3-642-57916-5 - M. Nagata,
*Complete reducibility of rational representations of a matric group*, J. Math. Kyoto Univ., 1:87–99, 1961/1962. - D. E. Radford,
*Hopf algebras*, volume 49 of Series on Knots and Everything. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. - M. Takeuchi,
*A two-parameter quantization of $\operatorname {GL}(n)$ (summary)*, Proc. Japan Acad. Ser. A Math. Sci., 66(5):112–114, 1990. - Chelsea Walton and Xingting Wang,
*On quantum groups associated to non-Noetherian regular algebras of dimension 2*, Math. Z.**284**(2016), no. 1-2, 543–574. MR**3545505**, DOI 10.1007/s00209-016-1666-1

## Additional Information

**Alexandru Chirvasitu**- Affiliation: Department of Mathematics, University at Buffalo, Buffalo, New York 14260
- MR Author ID: 868724
- Email: achirvas@buffalo.edu
**Chelsea Walton**- Affiliation: Department of Mathematics, The University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- MR Author ID: 879649
- Email: notlaw@illinois.edu
**Xingting Wang**- Affiliation: Department of Mathematics, Howard University, Washington, District of Columbia 20059
- MR Author ID: 1029882
- Email: xingting.wang@howard.edu
- Received by editor(s): July 26, 2018
- Received by editor(s) in revised form: February 23, 2019
- Published electronically: June 10, 2019
- Additional Notes: The first and second authors were partially supported by the U.S. National Science Foundation with grants #DMS-1801011 and #DMS-1663775, respectively.

The second author was also supported by a research fellowship from the Alfred P. Sloan foundation. - Communicated by: Kailash C. Misra
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**147**(2019), 4665-4672 - MSC (2010): Primary 16P90, 16T20, 20G42, 16T15
- DOI: https://doi.org/10.1090/proc/14616
- MathSciNet review: 4011503