On the structure of ideals and multipliers: A unified approach
Authors:
Mostafa Mbekhta and Matthias Neufang
Journal:
Proc. Amer. Math. Soc. 147 (2019), 4757-4769
MSC (2010):
Primary 43A10, 43A20, 46H10
DOI:
https://doi.org/10.1090/proc/14676
Published electronically:
August 7, 2019
MathSciNet review:
4011510
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We study the structure of one-sided ideals in a Banach algebra . We find very general conditions under which any left (right) ideal is of the form
(
) for some idempotent right (left) multiplier on
. We further show that a large class of one-sided multipliers can be realized as a product of an invertible and an idempotent multiplier. Applying our results to algebras over locally compact quantum groups and
-algebras, we demonstrate that our approach generalizes and unifies various theorems from abstract harmonic analysis and operator algebra theory. In particular, we generalize results of Bekka (and Reiter), Berglund, Forrest, and Lau-Losert. We also deduce the Choquet-Deny theorem for compact groups as an application of our approach. Moreover, we answer, for a certain class of measures on a compact group, a question of Ülger which, in the abelian case, goes back to Beurling (1938).
- [1] Melahat Almus, David P. Blecher, and Charles John Read, Ideals and hereditary subalgebras in operator algebras, Studia Math. 212 (2012), no. 1, 65–93. MR 3004167, https://doi.org/10.4064/sm212-1-5
- [2] Melahat Almus, David P. Blecher, and Sonia Sharma, Ideals and structure of operator algebras, J. Operator Theory 67 (2012), no. 2, 397–436. MR 2928323
- [3] Ahmadreza Azimifard, Ebrahim Samei, and Nico Spronk, Amenability properties of the centres of group algebras, J. Funct. Anal. 256 (2009), no. 5, 1544–1564. MR 2490229, https://doi.org/10.1016/j.jfa.2008.11.026
- [4] Mohammed E. B. Bekka, Complemented subspaces of 𝐿^{∞}(𝐺), ideals of 𝐿¹(𝐺) and amenability, Monatsh. Math. 109 (1990), no. 3, 195–203. MR 1058407, https://doi.org/10.1007/BF01297760
- [5] John J. Benedetto, Spectral synthesis, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, No. 66. MR 0622040
- [6] M. C. F. Berglund, Ideal 𝐶*-algebras, Duke Math. J. 40 (1973), 241–257. MR 322519
- [7] A. Beurling, Sur les intégrales de Fourier absolument convergentes et leurs applications à une transformation fonctionnelle, 9th Congress Math. Scand., pp. 345-366, Helsingfors (1938)
- [8] David P. Blecher and Narutaka Ozawa, Real positivity and approximate identities in Banach algebras, Pacific J. Math. 277 (2015), no. 1, 1–59. MR 3393680, https://doi.org/10.2140/pjm.2015.277.1
- [9] David P. Blecher and Charles John Read, Operator algebras with contractive approximate identities, J. Funct. Anal. 261 (2011), no. 1, 188–217. MR 2785898, https://doi.org/10.1016/j.jfa.2011.02.019
- [10] David P. Blecher and Charles John Read, Operator algebras with contractive approximate identities, II, J. Funct. Anal. 264 (2013), no. 4, 1049–1067. MR 3004957, https://doi.org/10.1016/j.jfa.2012.11.013
- [11] David P. Blecher and Charles John Read, Operator algebras with contractive approximate identities: weak compactness and the spectrum, J. Funct. Anal. 267 (2014), no. 6, 1837–1850. MR 3237775, https://doi.org/10.1016/j.jfa.2014.06.007
- [12] David P. Blecher and Charles John Read, Operator algebras with contractive approximate identities: a large operator algebra in 𝑐₀, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3243–3270. MR 3451876, https://doi.org/10.1090/S0002-9947-2015-06590-8
- [13] Brian Forrest, Amenability and bounded approximate identities in ideals of 𝐴(𝐺), Illinois J. Math. 34 (1990), no. 1, 1–25. MR 1031879
- [14] Brian Forrest, Amenability and ideals in 𝐴(𝐺), J. Austral. Math. Soc. Ser. A 53 (1992), no. 2, 143–155. MR 1175708
- [15] B. Forrest, E. Kaniuth, A. T. Lau, and N. Spronk, Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal. 203 (2003), no. 1, 286–304. MR 1996874, https://doi.org/10.1016/S0022-1236(02)00121-0
- [16] Brian E. Forrest and Volker Runde, Norm one idempotent 𝑐𝑏-multipliers with applications to the Fourier algebra in the 𝑐𝑏-multiplier norm, Canad. Math. Bull. 54 (2011), no. 4, 654–662. MR 2894515, https://doi.org/10.4153/CMB-2011-098-0
- [17] Robin Harte and Mostafa Mbekhta, On generalized inverses in 𝐶*-algebras, Studia Math. 103 (1992), no. 1, 71–77. MR 1184103, https://doi.org/10.4064/sm-103-1-71-77
- [18] B. Host, Le théorème des idempotents dans 𝐵(𝐺), Bull. Soc. Math. France 114 (1986), no. 2, 215–223 (French, with English summary). MR 860817
- [19] Zhiguo Hu, Matthias Neufang, and Zhong-Jin Ruan, Multipliers on a new class of Banach algebras, locally compact quantum groups, and topological centres, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 429–458. MR 2595745, https://doi.org/10.1112/plms/pdp026
- [20] Zhiguo Hu, Matthias Neufang, and Zhong-Jin Ruan, Module maps on duals of Banach algebras and topological centre problems, J. Funct. Anal. 260 (2011), no. 4, 1188–1218. MR 2747020, https://doi.org/10.1016/j.jfa.2010.10.017
- [21] Zhiguo Hu, Matthias Neufang, and Zhong-Jin Ruan, Module maps over locally compact quantum groups, Studia Math. 211 (2012), no. 2, 111–145. MR 2997583, https://doi.org/10.4064/sm211-2-2
- [22] Wojciech Jaworski and Matthias Neufang, The Choquet-Deny equation in a Banach space, Canad. J. Math. 59 (2007), no. 4, 795–827. MR 2338234, https://doi.org/10.4153/CJM-2007-034-4
- [23] E. Kaniuth, A. T. Lau, and A. Ülger, Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras, J. Lond. Math. Soc. (2) 81 (2010), no. 1, 255–275. MR 2580464, https://doi.org/10.1112/jlms/jdp068
- [24] E. Kaniuth, A. T. Lau, and A. Ülger, Power boundedness in Fourier and Fourier-Stieltjes algebras and other commutative Banach algebras, J. Funct. Anal. 260 (2011), no. 8, 2366–2386. MR 2772374, https://doi.org/10.1016/j.jfa.2010.11.012
- [25] E. Kaniuth, A. T. Lau, and A. Ülger, Power boundedness in Banach algebras associated with locally compact groups, Studia Math. 222 (2014), no. 2, 165–189. MR 3223323, https://doi.org/10.4064/sm222-2-4
- [26] Ronald Larsen, An introduction to the theory of multipliers, Springer-Verlag, New York-Heidelberg, 1971. Die Grundlehren der mathematischen Wissenschaften, Band 175. MR 0435738
- [27] Anthony To Ming Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, Trans. Amer. Math. Soc. 267 (1981), no. 1, 53–63. MR 621972, https://doi.org/10.1090/S0002-9947-1981-0621972-9
- [28] Anthony To Ming Lau and Viktor Losert, Weak*-closed complemented invariant subspaces of 𝐿_{∞}(𝐺) and amenable locally compact groups, Pacific J. Math. 123 (1986), no. 1, 149–159. MR 834144
- [29] K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), no. 2, 127–135. MR 1244571
- [30] Sheila A. McKilligan, On the representation of the multiplier algebras of some Banach algebras, J. London Math. Soc. (2) 6 (1973), 399–402. MR 318881, https://doi.org/10.1112/jlms/s2-6.3.399
- [31] Richard D. Mosak, Central functions in group algebras, Proc. Amer. Math. Soc. 29 (1971), 613–616. MR 279602, https://doi.org/10.1090/S0002-9939-1971-0279602-3
- [32] Richard D. Mosak, The 𝐿¹- and 𝐶*-algebras of [𝐹𝐼𝐴]⁻_{𝐵} groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277–310. MR 293016, https://doi.org/10.1090/S0002-9947-1972-0293016-7
- [33] D. Poulin, The strong topological centre and the dual factorization property, Ph.D. thesis, Carleton University (2011).
- [34] Hans Reiter, 𝐿¹-algebras and Segal algebras, Lecture Notes in Mathematics, Vol. 231, Springer-Verlag, Berlin-New York, 1971. MR 0440280
- [35] Volker Runde, Characterizations of compact and discrete quantum groups through second duals, J. Operator Theory 60 (2008), no. 2, 415–428. MR 2464219
- [36] A. Ülger, When is the range of a multiplier on a Banach algebra closed?, Math. Z. 254 (2006), no. 4, 715–728. MR 2253465, https://doi.org/10.1007/s00209-006-0003-5
- [37] Seiji Watanabe, A Banach algebra which is an ideal in the second dual space, Sci. Rep. Niigata Univ. Ser. A 11 (1974), 95–101. MR 0383079
- [38] G. A. Willis, Probability measures on groups and some related ideals in group algebras, J. Funct. Anal. 92 (1990), no. 1, 202–263. MR 1064694, https://doi.org/10.1016/0022-1236(90)90075-V
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 43A10, 43A20, 46H10
Retrieve articles in all journals with MSC (2010): 43A10, 43A20, 46H10
Additional Information
Mostafa Mbekhta
Affiliation:
Laboratoire de Mathématiques Paul Painlevé (UMR CNRS 8524), Université de Lille, Département de Mathématiques, 59655 Villeneuve d’Ascq Cedex, France
Email:
mostafa.mbekhta@univ-lille.fr
Matthias Neufang
Affiliation:
School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada; and Laboratoire de Mathématiques Paul Painlevé (UMR CNRS 8524), Université de Lille, Département de Mathématiques, 59655 Villeneuve d’Ascq Cedex, France
Email:
mneufang@math.carleton.ca; matthias.neufang@univ-lille.fr
DOI:
https://doi.org/10.1090/proc/14676
Received by editor(s):
January 2, 2019
Published electronically:
August 7, 2019
Additional Notes:
This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01). The second author was partially supported by NSERC Discovery Grant RGPIN-2014-06356. This support is gratefully acknowledged.
Communicated by:
Stephen Dilworth
Article copyright:
© Copyright 2019
American Mathematical Society