Multiplicity of the saturated special fiber ring of height two perfect ideals
Author:
Yairon Cid-Ruiz
Journal:
Proc. Amer. Math. Soc. 148 (2020), 59-70
MSC (2010):
Primary 13A30; Secondary 14E05, 13D02, 13D45
DOI:
https://doi.org/10.1090/proc/14693
Published electronically:
July 10, 2019
MathSciNet review:
4042830
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a polynomial ring and let
be a perfect ideal of height two minimally generated by forms of the same degree. We provide a formula for the multiplicity of the saturated special fiber ring of
. Interestingly, this formula is equal to an elementary symmetric polynomial in terms of the degrees of the syzygies of
. Applying ideas introduced by Busé, D'Andrea, and the author, we obtain the value of the
-multiplicity of
and an effective method for determining the degree and birationality of rational maps defined by homogeneous generators of
.
- [1] Rüdiger Achilles and Mirella Manaresi, Multiplicity for ideals of maximal analytic spread and intersection theory, J. Math. Kyoto Univ. 33 (1993), no. 4, 1029–1046. MR 1251213, https://doi.org/10.1215/kjm/1250519127
- [2] Nicolás Botbol, Laurent Busé, Marc Chardin, Seyed Hamid Hassanzadeh, Aron Simis, and Quang Hoa Tran, Effective criteria for bigraded birational maps, J. Symbolic Comput. 81 (2017), 69–87. MR 3594324, https://doi.org/10.1016/j.jsc.2016.12.001
- [3] M. P. Brodmann and R. Y. Sharp, Local cohomology, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 136, Cambridge University Press, Cambridge, 2013. An algebraic introduction with geometric applications. MR 3014449
- [4] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- [5] Laurent Busé, Yairon Cid-Ruiz, and Carlos D'Andrea, Degree and birationality of multi-graded rational maps, ArXiv e-prints (2018-05). arXiv:1805.05180.
- [6] Marc Chardin, Regularity of ideals and their powers, Prépublication, Institut de Mathématiques de Jussieu 364 (2004).
- [7]
Yairon Cid-Ruiz, A
-module approach on the equations of the Rees algebra, to appear in J. Commut. Algebra (2017). arXiv:1706.06215.
- [8] Yairon Cid-Ruiz and Aron Simis, Degree of rational maps via specialization, ArXiv e-prints (2019-01). arXiv:1901.06599.
- [9] David A. Cox, Equations of parametric curves and surfaces via syzygies, Symbolic computation: solving equations in algebra, geometry, and engineering (South Hadley, MA, 2000) Contemp. Math., vol. 286, Amer. Math. Soc., Providence, RI, 2001, pp. 1–20. MR 1874268, https://doi.org/10.1090/conm/286/04751
- [10] A. V. Doria, S. H. Hassanzadeh, and A. Simis, A characteristic-free criterion of birationality, Adv. Math. 230 (2012), no. 1, 390–413. MR 2900548, https://doi.org/10.1016/j.aim.2011.12.005
- [11] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- [12] David Eisenbud and Bernd Ulrich, Row ideals and fibers of morphisms, Michigan Math. J. 57 (2008), 261–268. Special volume in honor of Melvin Hochster. MR 2492452, https://doi.org/10.1307/mmj/1220879408
- [13] H. Flenner, L. O’Carroll, and W. Vogel, Joins and intersections, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1724388
- [14] Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
- [15] Seyed Hamid Hassanzadeh and Aron Simis, Plane Cremona maps: saturation and regularity of the base ideal, J. Algebra 371 (2012), 620–652. MR 2975417, https://doi.org/10.1016/j.jalgebra.2012.08.022
- [16] S. H. Hassanzadeh and A. Simis, Bounds on degrees of birational maps with arithmetically Cohen-Macaulay graphs, J. Algebra 478 (2017), 220–236. MR 3621670, https://doi.org/10.1016/j.jalgebra.2017.01.010
- [17] J. Herzog, A. Simis, and W. V. Vasconcelos, Koszul homology and blowing-up rings, Commutative algebra (Trento, 1981) Lecture Notes in Pure and Appl. Math., vol. 84, Dekker, New York, 1983, pp. 79–169. MR 686942
- [18] Klaus Hulek, Sheldon Katz, and Frank-Olaf Schreyer, Cremona transformations and syzygies, Math. Z. 209 (1992), no. 3, 419–443. MR 1152265, https://doi.org/10.1007/BF02570843
- [19] C. Huneke and M. Rossi, The dimension and components of symmetric algebras, J. Algebra 98 (1986), no. 1, 200–210. MR 825143, https://doi.org/10.1016/0021-8693(86)90023-2
- [20] Jack Jeffries and Jonathan Montaño, The 𝑗-multiplicity of monomial ideals, Math. Res. Lett. 20 (2013), no. 4, 729–744. MR 3188029, https://doi.org/10.4310/MRL.2013.v20.n4.a9
- [21] Jack Jeffries, Jonathan Montaño, and Matteo Varbaro, Multiplicities of classical varieties, Proc. Lond. Math. Soc. (3) 110 (2015), no. 4, 1033–1055. MR 3335294, https://doi.org/10.1112/plms/pdv005
- [22] Andrew Kustin, Claudia Polini, and Bernd Ulrich, Degree bounds for local cohomology, ArXiv e-prints (2015-05). arXiv:1505.05209.
- [23] Andrew R. Kustin, Claudia Polini, and Bernd Ulrich, Blowups and fibers of morphisms, Nagoya Math. J. 224 (2016), no. 1, 168–201. MR 3572752, https://doi.org/10.1017/nmj.2016.34
- [24] Andrew R. Kustin, Claudia Polini, and Bernd Ulrich, The equations defining blowup algebras of height three Gorenstein ideals, Algebra Number Theory 11 (2017), no. 7, 1489–1525. MR 3697146, https://doi.org/10.2140/ant.2017.11.1489
- [25] Koji Nishida and Bernd Ulrich, Computing 𝑗-multiplicities, J. Pure Appl. Algebra 214 (2010), no. 12, 2101–2110. MR 2660901, https://doi.org/10.1016/j.jpaa.2010.02.008
- [26] Ivan Pan and Aron Simis, Cremona maps of de Jonquières type, Canad. J. Math. 67 (2015), no. 4, 923–941. MR 3361019, https://doi.org/10.4153/CJM-2014-037-3
- [27] Claudia Polini and Yu Xie, 𝑗-multiplicity and depth of associated graded modules, J. Algebra 379 (2013), 31–49. MR 3019244, https://doi.org/10.1016/j.jalgebra.2013.01.001
- [28] Francesco Russo and Aron Simis, On birational maps and Jacobian matrices, Compositio Math. 126 (2001), no. 3, 335–358. MR 1834742, https://doi.org/10.1023/A:1017572213947
- [29] Aron Simis, Cremona transformations and some related algebras, J. Algebra 280 (2004), no. 1, 162–179. MR 2081926, https://doi.org/10.1016/j.jalgebra.2004.03.025
- [30] Bernd Ulrich and Wolmer V. Vasconcelos, The equations of Rees algebras of ideals with linear presentation, Math. Z. 214 (1993), no. 1, 79–92. MR 1234599, https://doi.org/10.1007/BF02572392
- [31] Wolmer V. Vasconcelos, Arithmetic of blowup algebras, London Mathematical Society Lecture Note Series, vol. 195, Cambridge University Press, Cambridge, 1994. MR 1275840
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13A30, 14E05, 13D02, 13D45
Retrieve articles in all journals with MSC (2010): 13A30, 14E05, 13D02, 13D45
Additional Information
Yairon Cid-Ruiz
Affiliation:
Department de Matemàtiques i Informàtica, Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585; 08007 Barcelona, Spain
Email:
ycid@ub.edu
DOI:
https://doi.org/10.1090/proc/14693
Keywords:
Saturated special fiber ring,
rational and birational maps,
$j$-multiplicity,
syzygies,
Rees algebra,
symmetric algebra,
special fiber ring,
multiplicity,
Hilbert-Burch theorem,
local cohomology
Received by editor(s):
July 12, 2018
Received by editor(s) in revised form:
April 11, 2019
Published electronically:
July 10, 2019
Additional Notes:
The author was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 675789
Communicated by:
Claudia Polini
Article copyright:
© Copyright 2019
American Mathematical Society