Periodic solutions to a forced Kepler problem in the plane
HTML articles powered by AMS MathViewer
- by Alberto Boscaggin, Walter Dambrosio and Duccio Papini
- Proc. Amer. Math. Soc. 148 (2020), 301-314
- DOI: https://doi.org/10.1090/proc/14719
- Published electronically: July 30, 2019
- PDF | Request permission
Abstract:
Given a smooth function $U(t,x)$, $T$-periodic in the first variable and satisfying $U(t,x) = \mathcal {O}(\vert x \vert ^{\alpha })$ for some $\alpha \in (0,2)$ as $\vert x \vert \to \infty$, we prove that the forced Kepler problem \begin{equation*} \ddot x = - \dfrac {x}{|x|^3} + \nabla _x U(t,x),\qquad x\in \mathbb {R}^2, \end{equation*} has a generalized $T$-periodic solution, according to the definition given in the paper by A. Boscaggin, R. Ortega, and L. Zhao [Trans. Amer. Math. Soc. 372 (2019), 677–703]. The proof relies on variational arguments.References
- Alain Albouy, Lectures on the two-body problem, Classical and celestial mechanics (Recife, 1993/1999) Princeton Univ. Press, Princeton, NJ, 2002, pp. 63–116. MR 1974780
- Antonio Ambrosetti and Vittorio Coti Zelati, Perturbation of Hamiltonian systems with Keplerian potentials, Math. Z. 201 (1989), no. 2, 227–242. MR 997224, DOI 10.1007/BF01160679
- Antonio Ambrosetti and Vittorio Coti Zelati, Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, vol. 10, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1267225, DOI 10.1007/978-1-4612-0319-3
- Pablo Amster, Julián Haddad, Rafael Ortega, and Antonio J. Ureña, Periodic motions in forced problems of Kepler type, NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 6, 649–657. MR 2861258, DOI 10.1007/s00030-011-0111-8
- Abbas Bahri and Paul H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal. 82 (1989), no. 2, 412–428. MR 987301, DOI 10.1016/0022-1236(89)90078-5
- Vivina Barutello, Davide L. Ferrario, and Susanna Terracini, Symmetry groups of the planar three-body problem and action-minimizing trajectories, Arch. Ration. Mech. Anal. 190 (2008), no. 2, 189–226. MR 2448317, DOI 10.1007/s00205-008-0131-7
- Vivina Barutello, Susanna Terracini, and Gianmaria Verzini, Entire parabolic trajectories as minimal phase transitions, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 391–429. MR 3148122, DOI 10.1007/s00526-012-0587-z
- Alberto Boscaggin, Arthur Bottois, and Walter Dambrosio, The spatial $N$-centre problem: scattering at positive energies, Calc. Var. Partial Differential Equations 57 (2018), no. 5, Paper No. 118, 23. MR 3830276, DOI 10.1007/s00526-018-1390-2
- Alberto Boscaggin, Walter Dambrosio, and Duccio Papini, Parabolic solutions for the planar $N$-centre problem: multiplicity and scattering, Ann. Mat. Pura Appl. (4) 197 (2018), no. 3, 869–882. MR 3802697, DOI 10.1007/s10231-017-0707-7
- Alberto Boscaggin, Walter Dambrosio, and Susanna Terracini, Scattering parabolic solutions for the spatial $N$-centre problem, Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1269–1306. MR 3594356, DOI 10.1007/s00205-016-1057-0
- Alberto Boscaggin and Rafael Ortega, Periodic solutions of a perturbed Kepler problem in the plane: from existence to stability, J. Differential Equations 261 (2016), no. 4, 2528–2551. MR 3505199, DOI 10.1016/j.jde.2016.05.004
- Alberto Boscaggin, Rafael Ortega, and Lei Zhao, Periodic solutions and regularization of a Kepler problem with time-dependent perturbation, Trans. Amer. Math. Soc. 372 (2019), no. 1, 677–703. MR 3968784, DOI 10.1090/tran/7589
- Hildeberto Cabral and Claudio Vidal, Periodic solutions of symmetric perturbations of the Kepler problem, J. Differential Equations 163 (2000), no. 1, 76–88. MR 1755069, DOI 10.1006/jdeq.1999.3733
- Roberto Castelli, Topologically distinct collision-free periodic solutions for the $N$-center problem, Arch. Ration. Mech. Anal. 223 (2017), no. 2, 941–975. MR 3590669, DOI 10.1007/s00205-016-1049-0
- Kuo-Chang Chen, A minimizing property of hyperbolic Keplerian orbits, J. Fixed Point Theory Appl. 19 (2017), no. 1, 281–287. MR 3625072, DOI 10.1007/s11784-016-0353-5
- A. Chenciner, Action minimizing solutions of the Newtonian $n$-body problem: from homology to symmetry, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 279–294. MR 1957539
- Alain Chenciner, Symmetries and “simple” solutions of the classical $n$-body problem, XIVth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2005, pp. 4–20. MR 2227817
- Alessandro Fonda and Anna Chiara Gallo, Radial periodic perturbations of the Kepler problem, Celestial Mech. Dynam. Astronom. 129 (2017), no. 3, 257–268. MR 3709344, DOI 10.1007/s10569-017-9769-5
- Alessandro Fonda and Anna Chiara Gallo, Periodic perturbations with rotational symmetry of planar systems driven by a central force, J. Differential Equations 264 (2018), no. 12, 7055–7068. MR 3779630, DOI 10.1016/j.jde.2018.02.009
- Alessandro Fonda, Rodica Toader, and Pedro J. Torres, Periodic motions in a gravitational central field with a rotating external force, Celestial Mech. Dynam. Astronom. 113 (2012), no. 3, 335–342. MR 2959086, DOI 10.1007/s10569-012-9428-9
- G. Fusco, G. F. Gronchi, and P. Negrini, Platonic polyhedra, topological constraints and periodic solutions of the classical $N$-body problem, Invent. Math. 185 (2011), no. 2, 283–332. MR 2819162, DOI 10.1007/s00222-010-0306-3
- William B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math. 99 (1977), no. 5, 961–971. MR 502484, DOI 10.2307/2373993
- E. Maderna and A. Venturelli, Globally minimizing parabolic motions in the Newtonian $N$-body problem, Arch. Ration. Mech. Anal. 194 (2009), no. 1, 283–313. MR 2533929, DOI 10.1007/s00205-008-0175-8
- Alessandro Margheri, Rafael Ortega, and Carlota Rebelo, Dynamics of Kepler problem with linear drag, Celestial Mech. Dynam. Astronom. 120 (2014), no. 1, 19–38. MR 3250827, DOI 10.1007/s10569-014-9553-8
- Rafael Ortega, Linear motions in a periodically forced Kepler problem, Port. Math. 68 (2011), no. 2, 149–176. MR 2849852, DOI 10.4171/PM/1885
- Carlota Rebelo and Alexandre Simões, Periodic linear motions with multiple collisions in a forced Kepler type problem, Discrete Contin. Dyn. Syst. 38 (2018), no. 8, 3955–3975. MR 3814360, DOI 10.3934/dcds.2018172
- Enrico Serra and Susanna Terracini, Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal. 22 (1994), no. 1, 45–62. MR 1256169, DOI 10.1016/0362-546X(94)90004-3
- Nicola Soave and Susanna Terracini, Symbolic dynamics for the $N$-centre problem at negative energies, Discrete Contin. Dyn. Syst. 32 (2012), no. 9, 3245–3301. MR 2912076, DOI 10.3934/dcds.2012.32.3245
- Nicola Soave and Susanna Terracini, Avoiding collisions under topological constraints in variational problems coming from celestial mechanics, J. Fixed Point Theory Appl. 14 (2013), no. 2, 457–501. MR 3248567, DOI 10.1007/s11784-014-0174-3
- H. J. Sperling, The collision singularity in a perturbed two-body problem, Celestial Mech. 1 (1969/70), 213–221. MR 258331, DOI 10.1007/BF01228841
- Kazunaga Tanaka, A note on generalized solutions of singular Hamiltonian systems, Proc. Amer. Math. Soc. 122 (1994), no. 1, 275–284. MR 1204387, DOI 10.1090/S0002-9939-1994-1204387-9
- Kazunaga Tanaka, Noncollision solutions for a second order singular Hamiltonian system with weak force, Ann. Inst. H. Poincaré C Anal. Non Linéaire 10 (1993), no. 2, 215–238 (English, with English and French summaries). MR 1220034, DOI 10.1016/S0294-1449(16)30219-0
- Susanna Terracini and Andrea Venturelli, Symmetric trajectories for the $2N$-body problem with equal masses, Arch. Ration. Mech. Anal. 184 (2007), no. 3, 465–493. MR 2299759, DOI 10.1007/s00205-006-0030-8
- J. Waldvogel, Fundamentals of regularization in celestial mechanics and linear perturbation theories, in B. A. Steves, M. Hendry, and A. C. Cameron (Eds.), Extra-Solar Planets: The Detection, Formation, Evolution and Dynamics of Planetary systems, CRC Press, 2010, 169–184.
- Alan Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math. 20 (1973), 47–57. MR 328222, DOI 10.1007/BF01405263
- Guowei Yu, Periodic solutions of the planar $N$-center problem with topological constraints, Discrete Contin. Dyn. Syst. 36 (2016), no. 9, 5131–5162. MR 3541520, DOI 10.3934/dcds.2016023
- Lei Zhao, Some collision solutions of the rectilinear periodically forced Kepler problem, Adv. Nonlinear Stud. 16 (2016), no. 1, 45–49. MR 3456745, DOI 10.1515/ans-2015-5021
Bibliographic Information
- Alberto Boscaggin
- Affiliation: Dipartimento di Matematica “Giuseppe Peano”, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
- MR Author ID: 896012
- Email: alberto.boscaggin@unito.it
- Walter Dambrosio
- Affiliation: Dipartimento di Matematica “Giuseppe Peano”, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
- MR Author ID: 640950
- Email: walter.dambrosio@unito.it
- Duccio Papini
- Affiliation: Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy
- MR Author ID: 664758
- Email: duccio.papini@uniud.it
- Received by editor(s): February 22, 2019
- Received by editor(s) in revised form: May 9, 2019
- Published electronically: July 30, 2019
- Additional Notes: This work was partially supported by the ERC Advanced Grant 2013 n. 339958 Complex Patterns for Strongly Interacting Dynamical Systems—COMPAT, by the INDAM-GNAMPA Projects Dinamiche complesse per il problema degli $N$-centri and Proprietà qualitative di alcuni problemi ai limiti and by the project PRID SiDiA—Sistemi Dinamici e Applicazioni of the DMIF—Università di Udine
- Communicated by: Wenxian Shen
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 301-314
- MSC (2010): Primary 37J45, 70B05, 70F16
- DOI: https://doi.org/10.1090/proc/14719
- MathSciNet review: 4042852