Hausdorff dimension of pinned distance sets and the $L^2$-method
HTML articles powered by AMS MathViewer
- by Bochen Liu
- Proc. Amer. Math. Soc. 148 (2020), 333-341
- DOI: https://doi.org/10.1090/proc/14740
- Published electronically: August 7, 2019
- PDF | Request permission
Abstract:
We prove that for any compact set $E\subset \mathbb {R}^2$, $\dim _{\mathcal {H}}(E)>1$, there exists $x\in E$ such that the Hausdorff dimension of the pinned distance set \begin{equation*} \Delta _x(E)=\{|x-y|: y \in E\} \end{equation*} is no less than $\min \left \{\frac {4}{3}\dim _{\mathcal {H}}(E)-\frac {2}{3}, 1\right \}$. This answers a question recently raised by Guth, Iosevich, Ou, and Wang, as well as improves results of Keleti and Shmerkin.References
- J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), no. 2, 334–365. MR 1982147, DOI 10.1007/s000390300008
- Xiumin Du and Ruixiang Zhang, Sharp $L^2$ estimates of the Schrödinger maximal function in higher dimensions, Ann. of Math. (2) 189 (2019), no. 3, 837–861. MR 3961084, DOI 10.4007/annals.2019.189.3.4
- X. Du, L. Guth, Y. Ou, H. Wang, B. Wilson, and R. Zhang, Weighted restriction estimates and application to falconer distance set problem, to appear in Amer. J. Math., https://arxiv.org/abs/1802.10186, 2018.
- K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985), no. 2, 206–212 (1986). MR 834490, DOI 10.1112/S0025579300010998
- L. Guth, A. Iosevich, Y. Ou, and H. Wang, On falconer’s distance set problem in the plane, preprint, arXiv.org:1808.09346, 2018.
- T. Keleti and P. Shmerkin, New bounds on the dimensions of planar distance sets, Geom. Funct. Anal. (2019). DOI 10.1007/s00039-019-00500-9
- Bochen Liu, An $L^2$-identity and pinned distance problem, Geom. Funct. Anal. 29 (2019), no. 1, 283–294. MR 3925111, DOI 10.1007/s00039-019-00482-8
- Pertti Mattila, Fourier analysis and Hausdorff dimension, Cambridge Studies in Advanced Mathematics, vol. 150, Cambridge University Press, Cambridge, 2015. MR 3617376, DOI 10.1017/CBO9781316227619
- Tuomas Orponen, On the dimension and smoothness of radial projections, Anal. PDE 12 (2019), no. 5, 1273–1294. MR 3892404, DOI 10.2140/apde.2019.12.1273
- P. Shmerkin, Improved bounds for the dimensions of planar distance sets, arXiv preprint arXiv: 1811.03379, 2018.
- Thomas Wolff, Decay of circular means of Fourier transforms of measures, Internat. Math. Res. Notices 10 (1999), 547–567. MR 1692851, DOI 10.1155/S1073792899000288
Bibliographic Information
- Bochen Liu
- Affiliation: Department of Mathematics, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- MR Author ID: 1066951
- Email: bochen.liu1989@gmail.com
- Received by editor(s): May 13, 2019
- Published electronically: August 7, 2019
- Additional Notes: The author was supported by the grant CUHK24300915 from the Hong Kong Research Grant Council
- Communicated by: Alexander Iosevich
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 333-341
- MSC (2010): Primary 28A75; Secondary 42B20
- DOI: https://doi.org/10.1090/proc/14740
- MathSciNet review: 4042855