A further note on the concordance invariants epsilon and upsilon
HTML articles powered by AMS MathViewer
- by Shida Wang
- Proc. Amer. Math. Soc. 148 (2020), 893-899
- DOI: https://doi.org/10.1090/proc/14727
- Published electronically: October 18, 2019
- PDF | Request permission
Abstract:
Hom gives an example of a knot with vanishing Upsilon invariant but nonzero epsilon invariant. We build more such knots that are linearly independent in the smooth concordance group.References
- Samantha Allen, Using secondary Upsilon invariants to rule out stable equivalence of knot complexes, arXiv:1706.07108.
- Irving Dai, Jennifer Hom, Matthew Stoffregen, and Linh Truong, More concordance homomorphisms from knot floer homology, arXiv:1902.03333.
- Peter Feller and David Krcatovich, On cobordisms between knots, braid index, and the upsilon-invariant, Math. Ann. 369 (2017), no. 1-2, 301–329. MR 3694648, DOI 10.1007/s00208-017-1519-1
- Stephen Hancock, Jennifer Hom, and Michael Newman, On the knot Floer filtration of the concordance group, J. Knot Theory Ramifications 22 (2013), no. 14, 1350084, 30. MR 3190122, DOI 10.1142/S0218216513500843
- Jennifer Hom, Bordered Heegaard Floer homology and the tau-invariant of cable knots, J. Topol. 7 (2014), no. 2, 287–326. MR 3217622, DOI 10.1112/jtopol/jtt030
- Jennifer Hom, The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014), no. 3, 537–570. MR 3260841, DOI 10.4171/CMH/326
- Jennifer Hom, An infinite-rank summand of topologically slice knots, Geom. Topol. 19 (2015), no. 2, 1063–1110. MR 3336278, DOI 10.2140/gt.2015.19.1063
- Jennifer Hom, A note on the concordance invariants epsilon and upsilon, Proc. Amer. Math. Soc. 144 (2016), no. 2, 897–902. MR 3430863, DOI 10.1090/proc/12706
- Jennifer Hom, A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications 26 (2017), no. 2, 1740015, 24. MR 3604497, DOI 10.1142/S0218216517400156
- Jennifer Hom, Corrigendum to “An infinite rank summand of topologically slice knots”, arXiv:1310.4476v2.
- Se-Goo Kim and Charles Livingston, Secondary upsilon invariants of knots, Q. J. Math. 69 (2018), no. 3, 799–813. MR 3859208, DOI 10.1093/qmath/hax062
- R. A. Litherland, Signatures of iterated torus knots, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977) Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 71–84. MR 547456
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116. MR 2065507, DOI 10.1016/j.aim.2003.05.001
- Peter Ozsváth and Zoltán Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6, 1281–1300. MR 2168576, DOI 10.1016/j.top.2005.05.001
- Peter S. Ozsváth, András I. Stipsicz, and Zoltán Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017), 366–426. MR 3667589, DOI 10.1016/j.aim.2017.05.017
- Jacob Andrew Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Harvard University. MR 2704683
- C. T. C. Wall, Singular points of plane curves, London Mathematical Society Student Texts, vol. 63, Cambridge University Press, Cambridge, 2004. MR 2107253, DOI 10.1017/CBO9780511617560
- Shida Wang, The genus filtration in the smooth concordance group, Pacific J. Math. 285 (2016), no. 2, 501–510. MR 3575577, DOI 10.2140/pjm.2016.285.501
- Xiaoyu Xu, On the secondary Upsilon invariant, arXiv:1805.09376.
Bibliographic Information
- Shida Wang
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- MR Author ID: 842909
- Email: shidawang@gmail.com
- Received by editor(s): January 2, 2019
- Received by editor(s) in revised form: May 31, 2019
- Published electronically: October 18, 2019
- Communicated by: David Futer
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 893-899
- MSC (2010): Primary 57M25, 57N70, 57R58
- DOI: https://doi.org/10.1090/proc/14727
- MathSciNet review: 4052224