Reflexivity and nonweakly null maximizing sequences
HTML articles powered by AMS MathViewer
- by Richard M. Aron, Domingo García, Daniel Pellegrino and Eduardo V. Teixeira
- Proc. Amer. Math. Soc. 148 (2020), 741-750
- DOI: https://doi.org/10.1090/proc/14728
- Published electronically: August 7, 2019
- PDF | Request permission
Abstract:
We introduce and explore a new property related to reflexivity that plays an important role in the characterization of norm attaining operators. We also present an application to the theory of compact perturbations of linear operators and characterize norm attaining scalar-valued continuous $2$-homogeneous polynomials on $\ell _{2}$.References
- María D. Acosta, Domingo García, and Manuel Maestre, A multilinear Lindenstrauss theorem, J. Funct. Anal. 235 (2006), no. 1, 122–136. MR 2216442, DOI 10.1016/j.jfa.2005.10.002
- María D. Acosta and Vladimir Kadets, A characterization of reflexive spaces, Math. Ann. 349 (2011), no. 3, 577–588. MR 2754997, DOI 10.1007/s00208-010-0528-0
- Spiros A. Argyros and Richard G. Haydon, A hereditarily indecomposable $\scr L_\infty$-space that solves the scalar-plus-compact problem, Acta Math. 206 (2011), no. 1, 1–54. MR 2784662, DOI 10.1007/s11511-011-0058-y
- Richard Aron, Antonia Cardwell, Domingo García, and Ignacio Zalduendo, A multilinear Phelps’ lemma, Proc. Amer. Math. Soc. 135 (2007), no. 8, 2549–2554. MR 2302575, DOI 10.1090/S0002-9939-07-08762-X
- R. M. Aron, C. Finet, and E. Werner, Some remarks on norm-attaining $n$-linear forms, Function spaces (Edwardsville, IL, 1994) Lecture Notes in Pure and Appl. Math., vol. 172, Dekker, New York, 1995, pp. 19–28. MR 1352216
- Richard M. Aron, Domingo García, and Manuel Maestre, On norm attaining polynomials, Publ. Res. Inst. Math. Sci. 39 (2003), no. 1, 165–172. MR 1935463, DOI 10.2977/prims/1145476151
- S. Banach, Uber homogene Polynome in $(L^{2})$, Studia Math. 7 (1938), 36–44.
- Geraldo Botelho, Mário C. Matos, and Daniel Pellegrino, Lineability of summing sets of homogeneous polynomials, Linear Multilinear Algebra 58 (2010), no. 1-2, 61–74. MR 2641522, DOI 10.1080/03081080802095446
- Lixin Cheng and Sijie Luo, Yet on linear structures of norm-attaining functionals on Asplund spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 1, 151–156. MR 3733281, DOI 10.1016/S0252-9602(17)30122-4
- John B. Conway, A course in operator theory, Graduate Studies in Mathematics, vol. 21, American Mathematical Society, Providence, RI, 2000. MR 1721402, DOI 10.1090/gsm/021
- Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327, DOI 10.1007/978-1-4471-0869-6
- F. J. García-Pacheco, The universal renorming, Israel J. Math. 202 (2014), no. 1, 405–422. MR 3265327, DOI 10.1007/s11856-014-1074-3
- R. C. James, Characterizations of reflexivity, Studia Math. 23 (1963/64), 205–216. MR 170192, DOI 10.4064/sm-23-3-205-216
- Robert C. James, Reflexivity and the sup of linear functionals, Israel J. Math. 13 (1972), 289–300 (1973). MR 338742, DOI 10.1007/BF02762803
- M. Jiménez Sevilla and J. P. Moreno, A note on norm attaining functionals, Proc. Amer. Math. Soc. 126 (1998), no. 7, 1989–1997. MR 1485482, DOI 10.1090/S0002-9939-98-04739-X
- Sun Kwang Kim and Han Ju Lee, The Bishop-Phelps-Bollobás property for operators from $\scr {C}(K)$ to uniformly convex spaces, J. Math. Anal. Appl. 421 (2015), no. 1, 51–58. MR 3250465, DOI 10.1016/j.jmaa.2014.06.081
- Janice Kover, Compact perturbations and norm attaining operators, Quaest. Math. 28 (2005), no. 4, 401–408. MR 2182451, DOI 10.2989/16073600509486137
- Joram Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139–148. MR 160094, DOI 10.1007/BF02759700
- J. Lindenstrauss, Some open problems in Banach space theory, Séminaire Choquet. Initiation à l’analyse, 15 (1975-1976), Exposée 18, 9 p.
- A. Pappas, Y. Sarantopoulos, and A. Tonge, Norm attaining polynomials, Bull. Lond. Math. Soc. 39 (2007), no. 2, 255–264. MR 2323457, DOI 10.1112/blms/bdl033
- Daniel Pellegrino and Eduardo V. Teixeira, Norm optimization problem for linear operators in classical Banach spaces, Bull. Braz. Math. Soc. (N.S.) 40 (2009), no. 3, 417–431. MR 2540517, DOI 10.1007/s00574-009-0019-7
- H. R. Pitt, A Note on Bilinear Forms, J. London Math. Soc. 11 (1936), no. 3, 174–180. MR 1574344, DOI 10.1112/jlms/s1-11.3.174
- Charles Stegall, Optimization and differentiation in Banach spaces, Proceedings of the symposium on operator theory (Athens, 1985), 1986, pp. 191–211. MR 872283, DOI 10.1016/0024-3795(86)90314-9
Bibliographic Information
- Richard M. Aron
- Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242
- MR Author ID: 27325
- Email: aron@math.kent.edu
- Domingo García
- Affiliation: Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain
- Email: domingo.garcia@uv.es
- Daniel Pellegrino
- Affiliation: Departamento de Matemática, UFPB, João Pessoa, PB, Brazil
- Email: dmpellegrino@gmail.com
- Eduardo V. Teixeira
- Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 32816
- MR Author ID: 710372
- Email: Eduardo.Teixeira@ucf.edu
- Received by editor(s): February 25, 2019
- Received by editor(s) in revised form: June 3, 2019
- Published electronically: August 7, 2019
- Additional Notes: The first and second authors were supported by MINECO and FEDER project MTM2017-83262-C2-1-P
The second author was also supported by PROMETEO/2017/102 of the Generalitat Valenciana
The third author was supported by CNPq-Grant 307327/2017-5
The fourth author was supported by FUNCAP/CNPq/PRONEX Grant 00068.01.00/15 - Communicated by: Stephen Dilworth
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 741-750
- MSC (2010): Primary 46B20; Secondary 46B25, 46G25
- DOI: https://doi.org/10.1090/proc/14728
- MathSciNet review: 4052211