On some embeddings between the cyclotomic quiver Hecke algebras
HTML articles powered by AMS MathViewer
- by Kai Zhou and Jun Hu
- Proc. Amer. Math. Soc. 148 (2020), 495-511
- DOI: https://doi.org/10.1090/proc/14733
- Published electronically: August 7, 2019
- PDF | Request permission
Abstract:
Let $I$ be a finite index set and let $A=(a_{ij})_{i,j\in I}$ be an arbitrary indecomposable symmetrizable generalized Cartan matrix. Let $Q^+$ be the positive root lattice and $P^+$ the set of dominant weights. For any $\beta \in Q^+$ and $\Lambda \in P^+$, let $\mathscr {R}_{\beta }^{\Lambda }$ be the corresponding cyclotomic quiver Hecke algebra over a field $K$. For each $i\in I$, there is a natural unital algebra homomorphism $\iota _{\beta ,i}$ from $\mathscr {R}_{\beta }^{\Lambda }$ to $e(\beta ,i)\mathscr {R}_{\beta +\alpha _i}^{\Lambda }e(\beta ,i)$. In this paper we show that the homomorphism $\iota _\beta :=\bigoplus _{i\in I}\iota _{\beta ,i}: \mathscr {R}_{\beta }^{\Lambda }\rightarrow \bigoplus _{i\in I}e(\beta ,i)\mathscr {R}_{\beta +\alpha _i}^{\Lambda }e(\beta ,i)$ is always injective unless $\beta =0$ and $\ell (\Lambda )=0$ or $A$ is of finite type and $\beta =\Lambda -w_0\Lambda$, where $w_0$ is the unique longest element in the finite Weyl group associated to the finite Cartan matrix $A$, and $\ell (\Lambda )$ is the level of $\Lambda$.References
- Susumu Ariki and Kazuhiko Koike, A Hecke algebra of $(\textbf {Z}/r\textbf {Z})\wr {\mathfrak {S}}_n$ and construction of its irreducible representations, Adv. Math. 106 (1994), no. 2, 216–243. MR 1279219, DOI 10.1006/aima.1994.1057
- Jonathan Brundan, Centers of degenerate cyclotomic Hecke algebras and parabolic category $\scr O$, Represent. Theory 12 (2008), 236–259. MR 2424964, DOI 10.1090/S1088-4165-08-00333-6
- Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451–484. MR 2551762, DOI 10.1007/s00222-009-0204-8
- Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971, DOI 10.1090/gsm/042
- Jun Hu and Xinfeng Liang, On the structure of cyclotomic nilHecke algebras, Pacific J. Math. 296 (2018), no. 1, 105–139. MR 3803724, DOI 10.2140/pjm.2018.296.105
- Jun Hu and Andrew Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type $A$, Adv. Math. 225 (2010), no. 2, 598–642. MR 2671176, DOI 10.1016/j.aim.2010.03.002
- Jun Hu and Andrew Mathas, Seminormal forms and cyclotomic quiver Hecke algebras of type $A$, Math. Ann. 364 (2016), no. 3-4, 1189–1254. MR 3466865, DOI 10.1007/s00208-015-1242-8
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Seok-Jin Kang and Masaki Kashiwara, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras, Invent. Math. 190 (2012), no. 3, 699–742. MR 2995184, DOI 10.1007/s00222-012-0388-1
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309–347. MR 2525917, DOI 10.1090/S1088-4165-09-00346-X
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685–2700. MR 2763732, DOI 10.1090/S0002-9947-2010-05210-9
- Alexander Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005. MR 2165457, DOI 10.1017/CBO9780511542800
- Aaron D. Lauda and Monica Vazirani, Crystals from categorified quantum groups, Adv. Math. 228 (2011), no. 2, 803–861. MR 2822211, DOI 10.1016/j.aim.2011.06.009
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Sinéad Lyle and Andrew Mathas, Blocks of cyclotomic Hecke algebras, Adv. Math. 216 (2007), no. 2, 854–878. MR 2351381, DOI 10.1016/j.aim.2007.06.008
- R. Rouquier, $2$ Kac–Moody algebras, preprint, math.RT/0812.5023v1, 2008.
- Raphaël Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2012), no. 2, 359–410. MR 2908731, DOI 10.1142/S1005386712000247
- P. Shan, M. Varagnolo, and E. Vasserot, On the center of quiver Hecke algebras, Duke Math. J. 166 (2017), no. 6, 1005–1101. MR 3635899, DOI 10.1215/00127094-3792705
- M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math. 659 (2011), 67–100. MR 2837011, DOI 10.1515/CRELLE.2011.068
Bibliographic Information
- Kai Zhou
- Affiliation: School of Mathematical Sciences, Zhejiang University, Hangzhou, 310027, People’s Republic of China
- MR Author ID: 1179872
- Email: 1083864334@qq.com
- Jun Hu
- Affiliation: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
- MR Author ID: 635795
- Email: junhu404@bit.edu.cn
- Received by editor(s): December 25, 2018
- Received by editor(s) in revised form: May 22, 2019
- Published electronically: August 7, 2019
- Additional Notes: The authors’ research was supported by the National Natural Science Foundation of China (No. 11525102).
- Communicated by: Kailash C. Misra
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 495-511
- MSC (2010): Primary 20C08, 16G99, 06B15
- DOI: https://doi.org/10.1090/proc/14733
- MathSciNet review: 4052189