A Beurling–Lax–Halmos theorem for spaces with a complete Nevanlinna–Pick factor
HTML articles powered by AMS MathViewer
- by Raphaël Clouâtre, Michael Hartz and Dominik Schillo
- Proc. Amer. Math. Soc. 148 (2020), 731-740
- DOI: https://doi.org/10.1090/proc/14736
- Published electronically: August 7, 2019
- PDF | Request permission
Abstract:
We provide a short argument to establish a Beurling–Lax–Halmos theorem for reproducing kernel Hilbert spaces whose kernel has a complete Nevanlinna–Pick factor. We also record factorization results for pairs of nested invariant subspaces.References
- Jim Agler and John E. McCarthy, Complete Nevanlinna-Pick kernels, J. Funct. Anal. 175 (2000), no. 1, 111–124. MR 1774853, DOI 10.1006/jfan.2000.3599
- Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, Graduate Studies in Mathematics, vol. 44, American Mathematical Society, Providence, RI, 2002. MR 1882259, DOI 10.1090/gsm/044
- A. Aleman, S. Richter, and C. Sundberg, Beurling’s theorem for the Bergman space, Acta Math. 177 (1996), no. 2, 275–310. MR 1440934, DOI 10.1007/BF02392623
- Alexandru Aleman, Michael Hartz, John E. McCarthy, and Stefan Richter, Factorizations induced by complete Nevanlinna-Pick factors, Adv. Math. 335 (2018), 372–404. MR 3836670, DOI 10.1016/j.aim.2018.07.013
- Alexandru Aleman, Stefan Richter, and Carl Sundberg, The majorization function and the index of invariant subspaces in the Bergman spaces, J. Anal. Math. 86 (2002), 139–182. MR 1894480, DOI 10.1007/BF02786647
- Alvaro Arias, Projective modules on Fock spaces, J. Operator Theory 52 (2004), no. 1, 139–172. MR 2091465
- William Arveson, Subalgebras of $C^*$-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), no. 2, 159–228. MR 1668582, DOI 10.1007/BF02392585
- Joseph A. Ball and Vladimir Bolotnikov, A Beurling type theorem in weighted Bergman spaces, C. R. Math. Acad. Sci. Paris 351 (2013), no. 11-12, 433–436 (English, with English and French summaries). MR 3090124, DOI 10.1016/j.crma.2013.06.004
- Joseph A. Ball and Vladimir Bolotnikov, Weighted Bergman spaces: shift-invariant subspaces and input/state/output linear systems, Integral Equations Operator Theory 76 (2013), no. 3, 301–356. MR 3065298, DOI 10.1007/s00020-013-2053-5
- M. Bhattacharjee, J. Eschmeier, Dinesh K. Keshari, and Jaydeb Sarkar, Dilations, wandering subspaces, and inner functions, Linear Algebra Appl. 523 (2017), 263–280. MR 3624676, DOI 10.1016/j.laa.2017.02.032
- Raphaël Clouâtre and Michael Hartz, Multiplier algebras of complete Nevanlinna-Pick spaces: dilations, boundary representations and hyperrigidity, J. Funct. Anal. 274 (2018), no. 6, 1690–1738. MR 3758546, DOI 10.1016/j.jfa.2017.10.008
- Devin C. V. Greene, Stefan Richter, and Carl Sundberg, The structure of inner multipliers on spaces with complete Nevanlinna-Pick kernels, J. Funct. Anal. 194 (2002), no. 2, 311–331. MR 1934606, DOI 10.1006/jfan.2002.3928
- Michael Hartz, On the isomorphism problem for multiplier algebras of Nevanlinna-Pick spaces, Canad. J. Math. 69 (2017), no. 1, 54–106. MR 3589854, DOI 10.4153/CJM-2015-050-6
- Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 0171178
- Yitzhak Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. MR 2039503, DOI 10.1017/CBO9781139165372
- Scott McCullough and Stefan Richter, Bergman-type reproducing kernels, contractive divisors, and dilations, J. Funct. Anal. 190 (2002), no. 2, 447–480. MR 1899491, DOI 10.1006/jfan.2001.3874
- Scott McCullough and Tavan T. Trent, Invariant subspaces and Nevanlinna-Pick kernels, J. Funct. Anal. 178 (2000), no. 1, 226–249. MR 1800795, DOI 10.1006/jfan.2000.3664
- Vern I. Paulsen and Mrinal Raghupathi, An introduction to the theory of reproducing kernel Hilbert spaces, Cambridge Studies in Advanced Mathematics, vol. 152, Cambridge University Press, Cambridge, 2016. MR 3526117, DOI 10.1017/CBO9781316219232
- Jaydeb Sarkar, An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces. I, J. Operator Theory 73 (2015), no. 2, 433–441. MR 3346131, DOI 10.7900/jot.2014jan29.2042
- Jaydeb Sarkar, An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces—II, Complex Anal. Oper. Theory 10 (2016), no. 4, 769–782. MR 3480603, DOI 10.1007/s11785-015-0501-8
- Sergei Shimorin, Wold-type decompositions and wandering subspaces for operators close to isometries, J. Reine Angew. Math. 531 (2001), 147–189. MR 1810120, DOI 10.1515/crll.2001.013
- Serguei Shimorin, Complete Nevanlinna-Pick property of Dirichlet-type spaces, J. Funct. Anal. 191 (2002), no. 2, 276–296. MR 1911187, DOI 10.1006/jfan.2001.3871
- Serguei Shimorin, On Beurling-type theorems in weighted $l^2$ and Bergman spaces, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1777–1787. MR 1955265, DOI 10.1090/S0002-9939-02-06721-7
- Rongwei Yang and Kehe Zhu, The root operator on invariant subspaces of the Bergman space, Illinois J. Math. 47 (2003), no. 4, 1227–1242. MR 2037000
Bibliographic Information
- Raphaël Clouâtre
- Affiliation: Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
- MR Author ID: 841119
- ORCID: 0000-0002-9691-2906
- Email: raphael.clouatre@umanitoba.ca
- Michael Hartz
- Affiliation: Fakultät für Mathematik und Informatik, FernUniversität in Hagen, 58084 Hagen, Germany
- MR Author ID: 997298
- Email: michael.hartz@fernuni-hagen.de
- Dominik Schillo
- Affiliation: Fachrichtung Mathematik, Universität des Saarlandes, Postfach 151150, 66041 Saarbücken, Germany
- MR Author ID: 1196587
- Email: schillo@math.uni-sb.de
- Received by editor(s): May 14, 2019
- Received by editor(s) in revised form: June 2, 2019
- Published electronically: August 7, 2019
- Additional Notes: The first author was partially supported by an NSERC Discovery grant.
- Communicated by: Stephan Ramon Garcia
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 731-740
- MSC (2010): Primary 47A15; Secondary 47B32, 46E22
- DOI: https://doi.org/10.1090/proc/14736
- MathSciNet review: 4052210