On modules $M$ with $\tau (M) \cong \nu \Omega ^{d+2}(M)$ for isolated singularities of Krull dimension $d$
HTML articles powered by AMS MathViewer
- by René Marczinzik
- Proc. Amer. Math. Soc. 148 (2020), 527-534
- DOI: https://doi.org/10.1090/proc/14738
- Published electronically: August 7, 2019
- PDF | Request permission
Abstract:
A classical formula for the Auslander–Reiten translate $\tau$ says that $\tau (M)\cong \nu \Omega ^2(M)$ for every indecomposable module $M$ of a selfinjective Artin algebra. We generalise this by showing that for a $2d$-periodic isolated singularity $A$ of Krull dimension $d$, we have for the Auslander–Reiten translate of an indecomposable nonprojective Cohen-Macaulay $A$-module $M$, $\tau (M)\cong \nu \Omega ^{d+2}(M)$ if and only if $\operatorname {Ext}_A^{d+1}(M,A)=\operatorname {Ext}_A^{d+2}(M,A)=0$. We give several applications for Artin algebras.References
- Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 0269685
- M. Auslander, M. I. Platzeck, and G. Todorov, Homological theory of idempotent ideals, Trans. Amer. Math. Soc. 332 (1992), no. 2, 667–692. MR 1052903, DOI 10.1090/S0002-9947-1992-1052903-5
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671
- D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991. Basic representation theory of finite groups and associative algebras. MR 1110581
- Lars Winther Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747, Springer-Verlag, Berlin, 2000. MR 1799866, DOI 10.1007/BFb0103980
- Kosmas Diveris and Marju Purin, Vanishing of self-extensions over symmetric algebras, J. Pure Appl. Algebra 218 (2014), no. 5, 962–971. MR 3149645, DOI 10.1016/j.jpaa.2013.10.012
- Christof Geiss, Bernard Leclerc, and Jan Schröer, Quivers with relations for symmetrizable Cartan matrices I: Foundations, Invent. Math. 209 (2017), no. 1, 61–158. MR 3660306, DOI 10.1007/s00222-016-0705-1
- Osamu Iyama, Auslander-Reiten theory revisited, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 349–397. MR 2484730, DOI 10.4171/062-1/8
- Bernhard Keller and Idun Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), no. 1, 123–151. MR 2313531, DOI 10.1016/j.aim.2006.07.013
- Otto Kerner and Dan Zacharia, Auslander-Reiten theory for modules of finite complexity over self-injective algebras, Bull. Lond. Math. Soc. 43 (2011), no. 1, 44–56. MR 2765548, DOI 10.1112/blms/bdq082
- Steffen König, Inger Heidi Slungård, and Changchang Xi, Double centralizer properties, dominant dimension, and tilting modules, J. Algebra 240 (2001), no. 1, 393–412. MR 1830559, DOI 10.1006/jabr.2000.8726
- Graham J. Leuschke and Roger Wiegand, Cohen-Macaulay representations, Mathematical Surveys and Monographs, vol. 181, American Mathematical Society, Providence, RI, 2012. MR 2919145, DOI 10.1090/surv/181
- Kiiti Morita, Duality in $\textrm {QF}-3$ rings, Math. Z. 108 (1969), 237–252. MR 241470, DOI 10.1007/BF01112025
- C. M. Ringel and P. Zhang, Gorenstein-projective and semi-Gorenstein-projective modules. https://arxiv.org/abs/1808.01809.
- Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937, DOI 10.1017/CBO9780511600685
Bibliographic Information
- René Marczinzik
- Affiliation: Institute of algebra and number theory, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Email: marczire@mathematik.uni-stuttgart.de
- Received by editor(s): March 6, 2019
- Received by editor(s) in revised form: June 14, 2019
- Published electronically: August 7, 2019
- Communicated by: Sarah Witherspoon
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 527-534
- MSC (2010): Primary 16G10, 16E10
- DOI: https://doi.org/10.1090/proc/14738
- MathSciNet review: 4052192