Fractional Hermite-Hadamard-type inequalities for interval-valued functions
HTML articles powered by AMS MathViewer
- by Hüseyin Budak, Tuba Tunç and Mehmet Zeki Sarikaya
- Proc. Amer. Math. Soc. 148 (2020), 705-718
- DOI: https://doi.org/10.1090/proc/14741
- Published electronically: August 7, 2019
- PDF | Request permission
Abstract:
In this paper, we define interval-valued right-sided Riemann- Liouville fractional integrals. Later, we handle Hermite-Hadamard inequality and Hermite-Hadamard-type inequalities via interval-valued Riemann-Liouville fractional integrals.References
- Jean-Pierre Aubin and Arrigo Cellina, Differential inclusions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory. MR 755330, DOI 10.1007/978-3-642-69512-4
- Alfonso G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28 (1994), no. 1, 7–12. MR 1304041
- Wolfgang W. Breckner, Continuity of generalized convex and generalized concave set-valued functions, Rev. Anal. Numér. Théor. Approx. 22 (1993), no. 1, 39–51. MR 1621546
- Y. Chalco-Cano, A. Flores-Franulič, and H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math. 31 (2012), no. 3, 457–472. MR 3009184
- Y. Chalco-Cano, W. A. Lodwick, and W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput. 19 (2015), no.11, 3293–3300. DOI:10.1007/s00500-014-1483-6.
- Feixiang Chen, A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math. 33 (2014), 299–306. MR 3310752
- Feixiang Chen, A note on Hermite-Hadamard inequalities for products of convex functions, J. Appl. Math. , posted on (2013), Art. ID 935020, 5. MR 3133978, DOI 10.1155/2013/935020
- Feixiang Chen and Shanhe Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for $s$-convex functions, J. Nonlinear Sci. Appl. 9 (2016), no. 2, 705–716. MR 3416283, DOI 10.22436/jnsa.009.02.32
- T. M. Costa, Jensen’s inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets and Systems 327 (2017), 31–47. MR 3704668, DOI 10.1016/j.fss.2017.02.001
- T. M. Costa and H. Román-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci. 420 (2017), 110–125. MR 3694425, DOI 10.1016/j.ins.2017.08.055
- Alexander Dinghas, Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Z. 66 (1956), 173–188 (German). MR 92170, DOI 10.1007/BF01186606
- S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, (2000).
- S. S. Dragomir, Inequalities of Hermite-Hadamard type for $h$-convex functions on linear spaces, Proyecciones 34 (2015), no. 4, 323–341. MR 3437222, DOI 10.4067/S0716-09172015000400002
- Sever Silvestru Dragomir, Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl. 167 (1992), no. 1, 49–56. MR 1165255, DOI 10.1016/0022-247X(92)90233-4
- S. S. Dragomir, J. Pečarić, and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), no. 3, 335–341. MR 1348130
- H. Román-Flores, Y. Chalco-Cano, and W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math. 37 (2018), no. 2, 1306–1318. MR 3804129, DOI 10.1007/s40314-016-0396-7
- H. Roman-Flores, Y. Chalco-Cano, and G. N. Silva, A note on Gronwall type inequality for interval-valued functions, IFSA World Congress and NAFIPS Annual Meeting IEEE, 35 (2013), 1455–1458, DOI:10.1109/IFSA-NAFIPS.2013.6608616.
- A. Flores-Franulic, Y. Chalco-Cano, and H. Roman-Flores, An Ostrowski type inequality for interval-valued functions, IFSA World Congress and NAFIPS Annual Meeting IEEE, 35 (2013), 1459–1462, DOI: 10.1109/IFSA-NAFIPS.2013.6608617.
- R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics (Udine, 1996) CISM Courses and Lect., vol. 378, Springer, Vienna, 1997, pp. 223–276. MR 1611585
- Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter, Applied interval analysis, Springer-Verlag London, Ltd., London, 2001. With examples in parameter and state estimation, robust control and robotics; With 1 CD-ROM (UNIX, Sun Solaris). MR 1989308, DOI 10.1007/978-1-4471-0249-6
- Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. MR 2218073
- U. S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir, and J. Pečarić, Hadamard-type inequalities for $s$-convex functions, Appl. Math. Comput. 193 (2007), no. 1, 26–35. MR 2385762, DOI 10.1016/j.amc.2007.03.030
- Vasile Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets and Systems 265 (2015), 63–85. MR 3310327, DOI 10.1016/j.fss.2014.04.005
- Svetoslav Markov, On the algebraic properties of convex bodies and some applications, J. Convex Anal. 7 (2000), no. 1, 129–166. MR 1773180
- S. Markov, Calculus for interval functions of a real variable, Computing 22 (1979), no. 4, 325–337 (English, with German summary). MR 620060, DOI 10.1007/BF02265313
- J.P. Merlet, Interval analysis for certified numerical solution of problems in robotics, International Journal of Applied Mathematics and Computer Science 19 (2009), no.3, 399-412, DOI: 10.2478/v10006-009-0033-3.
- Kenneth S. Miller and Bertram Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993. MR 1219954
- Flavia-Corina Mitroi, Kazimierz Nikodem, and Szymon Wąsowicz, Hermite-Hadamard inequalities for convex set-valued functions, Demonstratio Math. 46 (2013), no. 4, 655–662. MR 3136183
- Ramon E. Moore, Interval analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR 0231516
- Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud, Introduction to interval analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. MR 2482682, DOI 10.1137/1.9780898717716
- Kazimierz Nikodem, On midpoint convex set-valued functions, Aequationes Math. 33 (1987), no. 1, 46–56. MR 901799, DOI 10.1007/BF01836150
- K. Nikodem, J. L. Snchez, and L. Snchez, Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Mathematica Aeterna 4 (2014), no. 8, 979-987.
- Y. Chalco-Cano, M. A. Rojas-Medar, and R. Osuna-Gómez, $s$-convex fuzzy processes, Comput. Math. Appl. 47 (2004), no. 8-9, 1411–1418. MR 2070994, DOI 10.1016/S0898-1221(04)90133-2
- B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll. 6 (2003).
- Choonkil Park, Set-valued additive $\rho$-functional inequalities, J. Fixed Point Theory Appl. 20 (2018), no. 2, Paper No. 70, 12. MR 3787891, DOI 10.1007/s11784-018-0547-0
- Zlatko Pavić, Improvements of the Hermite-Hadamard inequality, J. Inequal. Appl. , posted on (2015), 2015:222, 11. MR 3368212, DOI 10.1186/s13660-015-0742-0
- Josip E. Pečarić, Frank Proschan, and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, vol. 187, Academic Press, Inc., Boston, MA, 1992. MR 1162312
- B. Piatek, On the Riemann integral of set-valued functions, Zeszyty Naukowe. Matematyka Stosowana/Politechnika Ślaska, (2012).
- Bożena Piątek, On the Sincov functional equation, Demonstratio Math. 38 (2005), no. 4, 875–881. MR 2199140, DOI 10.1515/dema-2005-0411
- Igor Podlubny, Fractional differential equations, Mathematics in Science and Engineering, vol. 198, Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. MR 1658022
- Elżbieta Sadowska, Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Results Math. 32 (1997), no. 3-4, 332–337. MR 1487604, DOI 10.1007/BF03322144
- M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, Hermite -Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling 57 (2013), 2403–2407, DOI:10.1016/j.mcm.2011.12.048.
- J. M. Snyder, Interval analysis for computer graphics, SIGGRAPH Comput.Graph, 26 (1992), 121-130, http://dx.doi.org/10.1145/142920.134024.
- Kuei-Lin Tseng and Shiow-Ru Hwang, New Hermite-Hadamard-type inequalities and their applications, Filomat 30 (2016), no. 14, 3667–3680. MR 3593739, DOI 10.2298/FIL1614667T
- Gou-Sheng Yang and Kuei-Lin Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl. 239 (1999), no. 1, 180–187. MR 1719056, DOI 10.1006/jmaa.1999.6506
- Gou-Sheng Yang and Min-Chung Hong, A note on Hadamard’s inequality, Tamkang J. Math. 28 (1997), no. 1, 33–37. MR 1457248, DOI 10.5556/j.tkjm.28.1997.4331
- Dafang Zhao, Tianqing An, Guoju Ye, and Wei Liu, New Jensen and Hermite-Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequal. Appl. , posted on (2018), Paper No. 302, 14. MR 3874054, DOI 10.1186/s13660-018-1896-3
- D. Zhao, G. Ye, W. Liu, D.F.M. Tores, Some inequalities for interval-valued functions on time scales, Soft Computing (2018), 1-11, http://dx.doi.org/10.1007/s00500-018-3538-6.
Bibliographic Information
- Hüseyin Budak
- Affiliation: Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
- MR Author ID: 1094290
- Email: hsyn.budak@gmail.com
- Tuba Tunç
- Affiliation: Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
- Email: tubatunc03@gmail.com
- Mehmet Zeki Sarikaya
- Affiliation: Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
- MR Author ID: 690360
- Email: sarikayamz@gmail.com
- Received by editor(s): February 4, 2019
- Received by editor(s) in revised form: May 22, 2019, and May 29, 2019
- Published electronically: August 7, 2019
- Communicated by: Mourad Ismail
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 705-718
- MSC (2010): Primary 26E25, 28B20, 26A33, 26D15
- DOI: https://doi.org/10.1090/proc/14741
- MathSciNet review: 4052208