Quasi-isometric rigidity of a class of right-angled Coxeter groups
HTML articles powered by AMS MathViewer
- by Jordan Bounds and Xiangdong Xie
- Proc. Amer. Math. Soc. 148 (2020), 553-568
- DOI: https://doi.org/10.1090/proc/14743
- Published electronically: August 7, 2019
- PDF | Request permission
Abstract:
We establish quasi-isometric rigidity for a class of right-angled Coxeter groups. Let $\Gamma _1$, $\Gamma _2$ be joins of finite thick generalized $m$-gons with $m\in \{3,4,6,8\}$. We show that the corresponding right-angled Coxeter groups are quasi-isometric if and only if $\Gamma _1$, $\Gamma _2$ are isomorphic. We also give a construction of commensurable right-angled Coxeter groups.References
- Jason Behrstock and Cornelia Druţu, Divergence, thick groups, and short conjugators, Illinois J. Math. 58 (2014), no. 4, 939–980. MR 3421592
- Jason Behrstock, Mark F. Hagen, and Alessandro Sisto, Thickness, relative hyperbolicity, and randomness in Coxeter groups, Algebr. Geom. Topol. 17 (2017), no. 2, 705–740. With an appendix written jointly with Pierre-Emmanuel Caprace. MR 3623669, DOI 10.2140/agt.2017.17.705
- Jason A. Behrstock and Walter D. Neumann, Quasi-isometric classification of graph manifold groups, Duke Math. J. 141 (2008), no. 2, 217–240. MR 2376814, DOI 10.1215/S0012-7094-08-14121-3
- Mladen Bestvina, Bruce Kleiner, and Michah Sageev, The asymptotic geometry of right-angled Artin groups. I, Geom. Topol. 12 (2008), no. 3, 1653–1699. MR 2421136, DOI 10.2140/gt.2008.12.1653
- Christopher H. Cashen and Alexandre Martin, Quasi-isometries between groups with two-ended splittings, Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 2, 249–291. MR 3604915, DOI 10.1017/S0305004116000530
- P. Dani, The large-scale geometry of right-angled Coxeter groups, arXiv:1807.08787, 2018.
- Pallavi Dani, Emily Stark, and Anne Thomas, Commensurability for certain right-angled Coxeter groups and geometric amalgams of free groups, Groups Geom. Dyn. 12 (2018), no. 4, 1273–1341. MR 3874643, DOI 10.4171/GGD/469
- Pallavi Dani and Anne Thomas, Bowditch’s JSJ tree and the quasi-isometry classification of certain Coxeter groups, J. Topol. 10 (2017), no. 4, 1066–1106. MR 3743069, DOI 10.1112/topo.12033
- Michael W. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008. MR 2360474
- Walter Feit and Graham Higman, The nonexistence of certain generalized polygons, J. Algebra 1 (1964), 114–131. MR 170955, DOI 10.1016/0021-8693(64)90028-6
- Damien Gaboriau and Frédéric Paulin, Sur les immeubles hyperboliques, Geom. Dedicata 88 (2001), no. 1-3, 153–197 (French, with English summary). MR 1877215, DOI 10.1023/A:1013168623727
- G. C. Hruska, E. Stark, and H. C. Tran, Surface group amalgams that (don’t) act on 3-manifolds, arXiv:1705.01361, 2017.
- Michael Kapovich, Bruce Kleiner, and Bernhard Leeb, Quasi-isometries and the de Rham decomposition, Topology 37 (1998), no. 6, 1193–1211. MR 1632904, DOI 10.1016/S0040-9383(97)00091-8
- Bruce Kleiner and Bernhard Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115–197 (1998). MR 1608566, DOI 10.1007/BF02698902
- William Malone, Topics in geometric group theory, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–The University of Utah. MR 2941275
- Gabor Moussong, Hyperbolic Coxeter groups, ProQuest LLC, Ann Arbor, MI, 1988. Thesis (Ph.D.)–The Ohio State University. MR 2636665
- H. Nguyen and H. C. Tran, On the coarse geometry of certain 2-dimensional right-angled Coxeter groups, arXiv: 1712.01079v1, 2017.
- Mark Ronan, Lectures on buildings, Perspectives in Mathematics, vol. 7, Academic Press, Inc., Boston, MA, 1989. MR 1005533
- Alessandro Sisto, Projections and relative hyperbolicity, Enseign. Math. (2) 59 (2013), no. 1-2, 165–181. MR 3113603, DOI 10.4171/LEM/59-1-6
- Anne Thomas, Geometric and topological aspects of Coxeter groups and buildings, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2018. MR 3821578, DOI 10.4171/189
- Hendrik Van Maldeghem, Generalized polygons, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1998. [2011 reprint of the 1998 original] [MR1725957]. MR 3014920, DOI 10.1007/978-3-0348-0271-0
- Hendrik Van Maldeghem, An introduction to generalized polygons, Tits buildings and the model theory of groups (Würzburg, 2000) London Math. Soc. Lecture Note Ser., vol. 291, Cambridge Univ. Press, Cambridge, 2002, pp. 23–57. MR 2018381, DOI 10.1017/CBO9780511549786.003
- Xiangdong Xie, Quasi-isometric rigidity of Fuchsian buildings, Topology 45 (2006), no. 1, 101–169. MR 2170496, DOI 10.1016/j.top.2005.06.005
Bibliographic Information
- Jordan Bounds
- Affiliation: Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403
- Address at time of publication: Department of Mathematics, Furman University, Greenville, South Carolina 29613
- MR Author ID: 1173230
- Email: jordan.bounds@furman.edu
- Xiangdong Xie
- Affiliation: Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403
- MR Author ID: 624250
- Email: xiex@bgsu.edu
- Received by editor(s): October 2, 2018
- Received by editor(s) in revised form: June 17, 2019
- Published electronically: August 7, 2019
- Additional Notes: The second author acknowledges support from Simons Foundation grant #315130.
- Communicated by: Pham Huu Tiep
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 553-568
- MSC (2010): Primary 20F67, 20F65
- DOI: https://doi.org/10.1090/proc/14743
- MathSciNet review: 4052194