On the size of orbits in the duals of $C^*$-algebras and convolution algebras
HTML articles powered by AMS MathViewer
- by Matthias Neufang
- Proc. Amer. Math. Soc. 148 (2020), 667-671
- DOI: https://doi.org/10.1090/proc/14780
- Published electronically: October 18, 2019
- PDF | Request permission
Abstract:
We solve an open problem raised in [Trans. Amer. Math. Soc. 366 (2014), pp.4151–4171] concerning (infinite-dimensional) commutative semisimple Banach algebras $\mathcal {A}$ with a bounded approximate identity, namely, whether there always exists a functional $f \in \mathcal {A}^*$ such that the orbit subspace $\mathcal {A}^{**} \Box f$ of $\mathcal {A}^*$ is $w^*$-closed and infinite-dimensional. Indeed, on the one hand, we show that no commutative $C^*$-algebra shares this property. On the other hand, we prove that the answer is positive, in a strong sense, in the case of convolution algebras $\mathcal {A} = L_1(\mathcal {G})$, for large classes of locally compact groups $\mathcal {G}$ (commutativity is not needed): there exists $f \in \mathcal {A}^*$ with maximal orbit, in fact, $f$ satisfies $\mathrm {Ball} (\mathcal {A}^*) = \mathrm {Ball}(\mathcal {A}^{**}) \Box f$. Moreover, as we shall see, the latter property links the size of orbits to Arens irregularity.References
- H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24, The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications. MR 1816726
- H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (2005), no. 836, vi+191. MR 2155972, DOI 10.1090/memo/0836
- Zhiguo Hu and Matthias Neufang, Decomposability of von Neumann algebras and the Mazur property of higher level, Canad. J. Math. 58 (2006), no. 4, 768–795. MR 2245273, DOI 10.4153/CJM-2006-031-7
- Nilgün Işık, John Pym, and Ali Ülger, The second dual of the group algebra of a compact group, J. London Math. Soc. (2) 35 (1987), no. 1, 135–148. MR 871771, DOI 10.1112/jlms/s2-35.1.135
- M. Filali, M. Neufang, and M. Sangani Monfared, Weak factorizations of operators in the group von Neumann algebras of certain amenable groups and applications, Math. Ann. 351 (2011), no. 4, 935–961. MR 2854118, DOI 10.1007/s00208-010-0622-3
- Anthony To Ming Lau and Viktor Losert, On the second conjugate algebra of $L_1(G)$ of a locally compact group, J. London Math. Soc. (2) 37 (1988), no. 3, 464–470. MR 939122, DOI 10.1112/jlms/s2-37.3.464
- Anthony To-Ming Lau and Ali Ülger, Characterization of closed ideals with bounded approximate identities in commutative Banach algebras, complemented subspaces of the group von Neumann algebras and applications, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4151–4171. MR 3206455, DOI 10.1090/S0002-9947-2014-06336-8
- Viktor Losert, Matthias Neufang, Jan Pachl, and Juris Steprāns, Proof of the Ghahramani-Lau conjecture, Adv. Math. 290 (2016), 709–738. MR 3451936, DOI 10.1016/j.aim.2015.12.004
- Matthias Neufang, A unified approach to the topological centre problem for certain Banach algebras arising in abstract harmonic analysis, Arch. Math. (Basel) 82 (2004), no. 2, 164–171. MR 2047670, DOI 10.1007/s00013-003-0516-7
- Matthias Neufang, Solution to a conjecture by Hofmeier-Wittstock, J. Funct. Anal. 217 (2004), no. 1, 171–180. MR 2097611, DOI 10.1016/j.jfa.2004.02.013
- Matthias Neufang, On a conjecture by Ghahramani-Lau and related problems concerning topological centres, J. Funct. Anal. 224 (2005), no. 1, 217–229. MR 2139110, DOI 10.1016/j.jfa.2004.11.007
- Theodore W. Palmer, Banach algebras and the general theory of $^*$-algebras. Vol. I, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR 1270014, DOI 10.1017/CBO9781107325777
- Shôichirô Sakai, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659–664. MR 163185, DOI 10.2140/pjm.1964.14.659
Bibliographic Information
- Matthias Neufang
- Affiliation: School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada; and Laboratoire de Mathématiques Paul Painlevé (UMR CNRS 8524), Université de Lille, UFR de Mathématiques, 59655 Villeneuve d’Ascq Cedex, France
- MR Author ID: 718390
- Email: mneufang@math.carleton.ca; matthias.neufang@univ-lille.fr
- Received by editor(s): May 6, 2019
- Published electronically: October 18, 2019
- Communicated by: Stephen Dilworth
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 667-671
- MSC (2010): Primary 43A20, 46H25, 46J10, 46J40, 46L05
- DOI: https://doi.org/10.1090/proc/14780
- MathSciNet review: 4052203