A dimension-free Hermite–Hadamard inequality via gradient estimates for the torsion function
HTML articles powered by AMS MathViewer
- by Jianfeng Lu and Stefan Steinerberger
- Proc. Amer. Math. Soc. 148 (2020), 673-679
- DOI: https://doi.org/10.1090/proc/14843
- Published electronically: November 4, 2019
- PDF | Request permission
Abstract:
Let $\Omega \subset \mathbb {R}^n$ be a convex domain, and let $f:\Omega \rightarrow \mathbb {R}$ be a subharmonic function, $\Delta f \geq 0$, which satisfies $f \geq 0$ on the boundary $\partial \Omega$. Then \begin{equation*} \int _{\Omega }{f ~dx} \leq |\Omega |^{\frac {1}{n}} \int _{\partial \Omega }{f ~d\sigma }. \end{equation*} Our proof is based on a new gradient estimate for the torsion function, $\Delta u = -1$ with Dirichlet boundary conditions, which is of independent interest.References
- Catherine Bandle, On symmetrizations in parabolic equations, J. Analyse Math. 30 (1976), 98–112. MR 442477, DOI 10.1007/BF02786706
- Rodrigo Bañuelos and Tom Carroll, Brownian motion and the fundamental frequency of a drum, Duke Math. J. 75 (1994), no. 3, 575–602. MR 1291697, DOI 10.1215/S0012-7094-94-07517-0
- T. Beck, The torsion function of convex domains of high eccentricity, arXiv:1809.09212
- Friedemann Brock and Alexander Yu. Solynin, An approach to symmetrization via polarization, Trans. Amer. Math. Soc. 352 (2000), no. 4, 1759–1796. MR 1695019, DOI 10.1090/S0002-9947-99-02558-1
- A. Burchard and M. Schmuckenschläger, Comparison theorems for exit times, Geom. Funct. Anal. 11 (2001), no. 4, 651–692. MR 1866798, DOI 10.1007/PL00001681
- J. de la Cal and J. Cárcamo, Multidimensional Hermite-Hadamard inequalities and the convex order, J. Math. Anal. Appl. 324 (2006), no. 1, 248–261. MR 2262469, DOI 10.1016/j.jmaa.2005.12.018
- Jesús de la Cal, Javier Cárcamo, and Luis Escauriaza, A general multidimensional Hermite-Hadamard type inequality, J. Math. Anal. Appl. 356 (2009), no. 2, 659–663. MR 2524298, DOI 10.1016/j.jmaa.2009.03.044
- Anthony Carbery, Vladimir Maz’ya, Marius Mitrea, and David Rule, The integrability of negative powers of the solution of the Saint Venant problem, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 2, 465–531. MR 3235523
- S. Dragomir and C. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000.
- Marcel Filoche and Svitlana Mayboroda, Universal mechanism for Anderson and weak localization, Proc. Natl. Acad. Sci. USA 109 (2012), no. 37, 14761–14766. MR 2990982, DOI 10.1073/pnas.1120432109
- Shein Liang Fu and Lewis Wheeler, Stress bounds for bars in torsion, J. Elasticity 3 (1973), no. 1, 1–13 (English, with German summary). MR 475082, DOI 10.1007/BF00045793
- J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, Journal de Mathématiques Pures et Appliquées, volume 58, 1893, pp. 171–215.
- C. Hermite, Sur deux limites d’une integrale define, Mathesis, 3 (1883), 82.
- Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, 2nd ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR 1121940, DOI 10.1007/978-1-4612-0949-2
- Grant Keady and Alex McNabb, The elastic torsion problem: solutions in convex domains, New Zealand J. Math. 22 (1993), no. 2, 43–64. MR 1244022
- L. G. Makar-Limanov, The solution of the Dirichlet problem for the equation $\Delta u=-1$ in a convex region, Mat. Zametki 9 (1971), 89–92 (Russian). MR 279321
- Mihai Mihăilescu and Constantin P. Niculescu, An extension of the Hermite-Hadamard inequality through subharmonic functions, Glasg. Math. J. 49 (2007), no. 3, 509–514. MR 2371515, DOI 10.1017/S0017089507003837
- Constantin P. Niculescu, The Hermite-Hadamard inequality for convex functions of a vector variable, Math. Inequal. Appl. 5 (2002), no. 4, 619–623. MR 1931222, DOI 10.7153/mia-05-62
- Constantin P. Niculescu and Lars-Erik Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange 29 (2003/04), no. 2, 663–685. MR 2083805, DOI 10.14321/realanalexch.29.2.0663
- L. E. Payne and G. A. Philippin, Isoperimetric inequalities in the torsion and clamped membrane problems for convex plane domains, SIAM J. Math. Anal. 14 (1983), no. 6, 1154–1162. MR 718815, DOI 10.1137/0514089
- L. E. Payne and L. T. Wheeler, On the cross section of minimum stress concentration in the Saint-Venant theory of torsion, J. Elasticity 14 (1984), no. 1, 15–18. MR 739115, DOI 10.1007/BF00041079
- S. Steinerberger, The Hermite-Hadamard inequality in higher dimensions, Journal of Geometric Analysis, to appear.
- Stefan Steinerberger, Topological bounds for Fourier coefficients and applications to torsion, J. Funct. Anal. 274 (2018), no. 6, 1611–1630. MR 3758543, DOI 10.1016/j.jfa.2017.09.015
Bibliographic Information
- Jianfeng Lu
- Affiliation: Department of Mathematics, Department of Physics, and Department of Chemistry, Duke University, Box 90320, Durham, North Carolina 27708
- MR Author ID: 822782
- ORCID: 0000-0001-6255-5165
- Email: jianfeng@math.duke.edu
- Stefan Steinerberger
- Affiliation: Department of Mathematics, Yale University, New Haven, Connecticut 06510
- MR Author ID: 869041
- ORCID: 0000-0002-7745-4217
- Email: stefan.steinerberger@yale.edu
- Received by editor(s): May 9, 2019
- Published electronically: November 4, 2019
- Additional Notes: The first author was supported in part by the National Science Foundation via grant DMS-1454939.
The second author was supported in part by the NSF (DMS-1763179) and the Alfred P. Sloan Foundation. - Communicated by: Deane Yang
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 673-679
- MSC (2010): Primary 26B25, 28A75, 31A05, 31B05, 35B50
- DOI: https://doi.org/10.1090/proc/14843
- MathSciNet review: 4052204