Exotic symplectic structures
HTML articles powered by AMS MathViewer
- by Roger Casals
- Proc. Amer. Math. Soc. 148 (2020), 825-834
- DOI: https://doi.org/10.1090/proc/14853
- Published electronically: November 13, 2019
- PDF | Request permission
Abstract:
The symplectization of an overtwisted contact $(\mathbb {R}^3,\xi _{ot})$ is shown to be an exotic symplectic $\mathbb {R}^4$. The technique of proof is also used to produce exotic symplectic $\mathbb {R}^{2n}$ using a GPS–structure and applies to symplectizations of open contact manifolds.References
- V. I. Arnol′d and A. B. Givental′, Symplectic geometry [ MR0842908 (88b:58044)], Dynamical systems, IV, Encyclopaedia Math. Sci., vol. 4, Springer, Berlin, 2001, pp. 1–138. MR 1866631
- Daniel Bennequin, Entrelacements et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982) Astérisque, vol. 107, Soc. Math. France, Paris, 1983, pp. 87–161 (French). MR 753131
- Matthew Strom Borman, Yakov Eliashberg, and Emmy Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015), no. 2, 281–361. MR 3455235, DOI 10.1007/s11511-016-0134-4
- Larry Bates and Georg Peschke, A remarkable symplectic structure, J. Differential Geom. 32 (1990), no. 2, 533–538. MR 1072917
- Roger Casals, Emmy Murphy, and Francisco Presas, Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019), no. 2, 563–604. MR 3904160, DOI 10.1090/jams/917
- Y. Eliashberg, Classification of overtwisted contact structures on $3$-manifolds, Invent. Math. 98 (1989), no. 3, 623–637. MR 1022310, DOI 10.1007/BF01393840
- Yakov Eliashberg, Contact $3$-manifolds twenty years since J. Martinet’s work, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 165–192 (English, with French summary). MR 1162559, DOI 10.5802/aif.1288
- Yakov Eliashberg, Classification of contact structures on $\mathbf R^3$, Internat. Math. Res. Notices 3 (1993), 87–91. MR 1208828, DOI 10.1155/S107379289300008X
- Yakov Eliashberg and Emmy Murphy, Lagrangian caps, Geom. Funct. Anal. 23 (2013), no. 5, 1483–1514. MR 3102911, DOI 10.1007/s00039-013-0239-2
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505, DOI 10.1007/978-3-662-02267-2
- Mark McLean, Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009), no. 4, 1877–1944. MR 2497314, DOI 10.2140/gt.2009.13.1877
- Marie-Paule Muller, Une structure symplectique sur $\textbf {R}^6$ avec une sphère lagrangienne plongée et un champ de Liouville complet, Comment. Math. Helv. 65 (1990), no. 4, 623–663 (French). MR 1078102, DOI 10.1007/BF02566630
- Klaus Niederkrüger, The plastikstufe—a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006), 2473–2508. MR 2286033, DOI 10.2140/agt.2006.6.2473
- Klaus Niederkrüger and Francisco Presas, Some remarks on the size of tubular neighborhoods in contact topology and fillability, Geom. Topol. 14 (2010), no. 2, 719–754. MR 2602849, DOI 10.2140/gt.2010.14.719
- Francisco Presas, A class of non-fillable contact structures, Geom. Topol. 11 (2007), 2203–2225. MR 2372846, DOI 10.2140/gt.2007.11.2203
- Paul Seidel and Ivan Smith, The symplectic topology of Ramanujam’s surface, Comment. Math. Helv. 80 (2005), no. 4, 859–881. MR 2182703, DOI 10.4171/CMH/37
- Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. II. Topological classification, Compositio Math. 138 (2003), no. 2, 125–156. MR 2018823, DOI 10.1023/A:1026133814607
Bibliographic Information
- Roger Casals
- Affiliation: Department of Mathematics, University of California Davis, Shields Avenue, Davis, California 95616
- MR Author ID: 1096004
- Email: casals@math.ucdavis.edu
- Received by editor(s): February 6, 2019
- Published electronically: November 13, 2019
- Additional Notes: The author was supported by the NSF grant DMS-1841913 and a BBVA Research Fellowship.
- Communicated by: Jia-Ping Wang
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 825-834
- MSC (2010): Primary 53D05, 53D10
- DOI: https://doi.org/10.1090/proc/14853
- MathSciNet review: 4052218