## On entropy of spherical twists

HTML articles powered by AMS MathViewer

- by Genki Ouchi; with an appendix by Arend Bayer PDF
- Proc. Amer. Math. Soc.
**148**(2020), 1003-1014 Request permission

## Abstract:

In this paper, we compute categorical entropy of spherical twists. In particular, we prove that the Gromov–Yomdin-type conjecture holds for spherical twists. Moreover, we construct counterexamples of Gromov–Yomdin type conjecture for K3 surfaces modifying Fan’s construction for even higher-dimensional Calabi–Yau manifolds.

The appendix, by Arend Bayer, shows the nonemptiness of complements of a number of spherical objects in the derived categories of K3 surfaces.

## References

- Arend Bayer and Tom Bridgeland,
*Derived automorphism groups of K3 surfaces of Picard rank 1*, Duke Math. J.**166**(2017), no. 1, 75–124. MR**3592689**, DOI 10.1215/00127094-3674332 - Arend Bayer and Emanuele Macrì,
*MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations*, Invent. Math.**198**(2014), no. 3, 505–590. MR**3279532**, DOI 10.1007/s00222-014-0501-8 - Tom Bridgeland,
*Stability conditions on $K3$ surfaces*, Duke Math. J.**141**(2008), no. 2, 241–291. MR**2376815**, DOI 10.1215/S0012-7094-08-14122-5 - G. Dimitrov, F. Haiden, L. Katzarkov, and M. Kontsevich,
*Dynamical systems and categories*, The influence of Solomon Lefschetz in geometry and topology, Contemp. Math., vol. 621, Amer. Math. Soc., Providence, RI, 2014, pp. 133–170. MR**3289326**, DOI 10.1090/conm/621/12421 - Yu-Wei Fan,
*Entropy of an autoequivalence on Calabi-Yau manifolds*, Math. Res. Lett.**25**(2018), no. 2, 509–519. MR**3826832**, DOI 10.4310/MRL.2018.v25.n2.a8 - Takao Fujita,
*Vanishing theorems for semipositive line bundles*, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 519–528. MR**726440**, DOI 10.1007/BFb0099977 - M. Gromov,
*Entropy, homology and semialgebraic geometry*, Astérisque**145-146**(1987), 5, 225–240. Séminaire Bourbaki, Vol. 1985/86. MR**880035** - Mikhaïl Gromov,
*On the entropy of holomorphic maps*, Enseign. Math. (2)**49**(2003), no. 3-4, 217–235. MR**2026895** - D. Huybrechts,
*Fourier-Mukai transforms in algebraic geometry*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR**2244106**, DOI 10.1093/acprof:oso/9780199296866.001.0001 - Daniel Huybrechts,
*Lectures on K3 surfaces*, Cambridge Studies in Advanced Mathematics, vol. 158, Cambridge University Press, Cambridge, 2016. MR**3586372**, DOI 10.1017/CBO9781316594193 - A. Ikeda,
*Mass growth of objects and categorical entropy*, arXiv: 1612.00995. - Kohei Kikuta,
*On entropy for autoequivalences of the derived category of curves*, Adv. Math.**308**(2017), 699–712. MR**3600071**, DOI 10.1016/j.aim.2016.12.027 - M. Kontsevich and Y. Soibelman,
*Notes on $A_\infty$-algebras, $A_\infty$-categories and non-commutative geometry*, Homological mirror symmetry, Lecture Notes in Phys., vol. 757, Springer, Berlin, 2009, pp. 153–219. MR**2596638** - K. Kikuta, Y. Shiraishi and A. Takahashi,
*A note on entropy of autoequivalences: lower bound and the case of orbifold projective lines*, Nagoya Mathematical Journal, 2018, https://doi.org/10.1017/nmj.2018.21, arXiv:1703.07147. - Kohei Kikuta and Atsushi Takahashi,
*On the categorical entropy and the topological entropy*, Int. Math. Res. Not. IMRN**2**(2019), 457–469. MR**3903564**, DOI 10.1093/imrn/rnx131 - Robert Lazarsfeld,
*Positivity in algebraic geometry. I*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR**2095471**, DOI 10.1007/978-3-642-18808-4 - Keiji Oguiso,
*Some aspects of explicit birational geometry inspired by complex dynamics*, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 695–721. MR**3728634** - Dmitri Orlov,
*Remarks on generators and dimensions of triangulated categories*, Mosc. Math. J.**9**(2009), no. 1, 153–159, back matter (English, with English and Russian summaries). MR**2567400**, DOI 10.17323/1609-4514-2009-9-1-143-149 - Dmitri Orlov,
*Derived categories of coherent sheaves and triangulated categories of singularities*, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Boston, MA, 2009, pp. 503–531. MR**2641200**, DOI 10.1007/978-0-8176-4747-6_{1}6 - Genki Ouchi,
*Automorphisms of positive entropy on some hyperKähler manifolds via derived automorphisms of K3 surfaces*, Adv. Math.**335**(2018), 1–26. MR**3836656**, DOI 10.1016/j.aim.2018.06.004 - Y. Yomdin,
*Volume growth and entropy*, Israel J. Math.**57**(1987), no. 3, 285–300. MR**889979**, DOI 10.1007/BF02766215 - K\B{o}ta Yoshioka,
*Fourier-Mukai transform on abelian surfaces*, Math. Ann.**345**(2009), no. 3, 493–524. MR**2534105**, DOI 10.1007/s00208-009-0356-2

## Additional Information

**Genki Ouchi**- Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8914, Japan
- Address at time of publication: RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program, 2F Main Research Building, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- MR Author ID: 1205200
- Email: genki.oouchi@gmail.com
**Arend Bayer**- Affiliation: School of Mathematics and Maxwell Institute, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
- MR Author ID: 728427
- Email: arend.bayer@ed.ac.uk
- Received by editor(s): September 27, 2017
- Received by editor(s) in revised form: July 9, 2019
- Published electronically: October 18, 2019
- Additional Notes: This work was supported by Grant-in-Aid for JSPS Research Fellow 15J08505.
- Communicated by: Lev Borisov
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**148**(2020), 1003-1014 - MSC (2010): Primary 14F05
- DOI: https://doi.org/10.1090/proc/14762
- MathSciNet review: 4055930