Dual graphs from noncommutative and quasisymmetric Schur functions
HTML articles powered by AMS MathViewer
- by S. van Willigenburg
- Proc. Amer. Math. Soc. 148 (2020), 1063-1078
- DOI: https://doi.org/10.1090/proc/14786
- Published electronically: November 6, 2019
- PDF | Request permission
Abstract:
By establishing relations between operators on compositions, we show that the posets of compositions arising from the right and left Pieri rules for noncommutative Schur functions can each be endowed with both the structure of dual graded graphs and dual filtered graphs when paired with the poset of compositions arising from the Pieri rules for quasisymmetric Schur functions and its deformation.References
- Chris Berg, Franco Saliola, and Luis Serrano, The down operator and expansions of near rectangular $k$-Schur functions, J. Combin. Theory Ser. A 120 (2013), no. 3, 623–636. MR 3007139, DOI 10.1016/j.jcta.2012.11.004
- Nantel Bergeron, Thomas Lam, and Huilan Li, Combinatorial Hopf algebras and towers of algebras—dimension, quantization and functorality, Algebr. Represent. Theory 15 (2012), no. 4, 675–696. MR 2944437, DOI 10.1007/s10468-010-9258-y
- C. Bessenrodt, K. Luoto, and S. van Willigenburg, Skew quasisymmetric Schur functions and noncommutative Schur functions, Adv. Math. 226 (2011), no. 5, 4492–4532. MR 2770457, DOI 10.1016/j.aim.2010.12.015
- Gérard Duchamp, Daniel Krob, Bernard Leclerc, and Jean-Yves Thibon, Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à $q=0$, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 2, 107–112 (French, with English and French summaries). MR 1373744
- Sergey Fomin, Duality of graded graphs, J. Algebraic Combin. 3 (1994), no. 4, 357–404. MR 1293822, DOI 10.1023/A:1022412010826
- Sergey Fomin, Schensted algorithms for dual graded graphs, J. Algebraic Combin. 4 (1995), no. 1, 5–45. MR 1314558, DOI 10.1023/A:1022404807578
- Sergey Fomin, Schur operators and Knuth correspondences, J. Combin. Theory Ser. A 72 (1995), no. 2, 277–292. MR 1357774, DOI 10.1016/0097-3165(95)90065-9
- Christian Gaetz, Dual graded graphs and Bratteli diagrams of towers of groups, Electron. J. Combin. 26 (2019), no. 1, Paper No. 1.25, 12. MR 3919618, DOI 10.37236/7790
- Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, and Jean-Yves Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), no. 2, 218–348. MR 1327096, DOI 10.1006/aima.1995.1032
- Ira M. Gessel, Multipartite $P$-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR 777705, DOI 10.1090/conm/034/777705
- J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg, Quasisymmetric Schur functions, J. Combin. Theory Ser. A 118 (2011), no. 2, 463–490. MR 2739497, DOI 10.1016/j.jcta.2009.11.002
- Patricia Hersh and Samuel K. Hsiao, Random walks on quasisymmetric functions, Adv. Math. 222 (2009), no. 3, 782–808. MR 2553370, DOI 10.1016/j.aim.2009.05.014
- Thomas Lam, Signed differential posets and sign-imbalance, J. Combin. Theory Ser. A 115 (2008), no. 3, 466–484. MR 2402605, DOI 10.1016/j.jcta.2007.07.003
- Thomas Lam, Quantized dual graded graphs, Electron. J. Combin. 17 (2010), no. 1, Research Paper 88, 11. MR 2661391, DOI 10.37236/360
- Thomas F. Lam and Mark Shimozono, Dual graded graphs for Kac-Moody algebras, Algebra Number Theory 1 (2007), no. 4, 451–488. MR 2368957, DOI 10.2140/ant.2007.1.451
- Alexander R. Miller, Differential posets have strict rank growth: a conjecture of Stanley, Order 30 (2013), no. 2, 657–662. MR 3063211, DOI 10.1007/s11083-012-9268-y
- J. Nzeutchap, Dual graded graphs and Fomin’s $r$-correspondences associated to the Hopf algebras of planar binary trees, quasi-symmetric functions and noncommutative symmetric functions, FPSAC 2006.
- Rebecca Patrias and Pavlo Pylyavskyy, Dual filtered graphs, Algebr. Comb. 1 (2018), no. 4, 441–500. MR 3875073, DOI 10.5802/alco
- Richard P. Stanley, Differential posets, J. Amer. Math. Soc. 1 (1988), no. 4, 919–961. MR 941434, DOI 10.1090/S0894-0347-1988-0941434-9
- Richard P. Stanley, Variations on differential posets, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 145–165. MR 1035494
- Richard P. Stanley and Fabrizio Zanello, On the rank function of a differential poset, Electron. J. Combin. 19 (2012), no. 2, Paper 13, 17. MR 2928628, DOI 10.37236/2258
- Vasu Tewari, Backward jeu de taquin slides for composition tableaux and a noncommutative Pieri rule, Electron. J. Combin. 22 (2015), no. 1, Paper 1.42, 50. MR 3336556, DOI 10.37236/4976
Bibliographic Information
- S. van Willigenburg
- Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- MR Author ID: 619047
- Email: steph@math.ubc.ca
- Received by editor(s): April 26, 2018
- Received by editor(s) in revised form: July 25, 2019
- Published electronically: November 6, 2019
- Additional Notes: The author was supported in part by the National Sciences and Engineering Research Council of Canada
- Communicated by: Patricia L. Hersh
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 1063-1078
- MSC (2010): Primary 05A05, 05A19, 05E05, 06A07, 19M05
- DOI: https://doi.org/10.1090/proc/14786
- MathSciNet review: 4055935