Explicit upper bounds on the least primitive root
HTML articles powered by AMS MathViewer
- by Kevin J. McGown and Tim Trudgian
- Proc. Amer. Math. Soc. 148 (2020), 1049-1061
- DOI: https://doi.org/10.1090/proc/14800
- Published electronically: October 28, 2019
- PDF | Request permission
Abstract:
We give a method for producing explicit bounds on $g(p)$, the least primitive root modulo $p$. Using our method we show that \[ g(p)<2r 2^{r\omega (p-1)} p^{\frac {1}{4}+\frac {1}{4r}}\] for $p>10^{56}$ where $r\geq 2$ is an integer parameter. This result beats existing bounds that rely on explicit versions of the Burgess inequality. Our main result allows one to derive bounds of differing shapes for various ranges of $p$. For example, our method also allows us to show that $g(p)<p^{5/8}$ for all $p\geq 10^{22}$ and $g(p)<p^{1/2}$ for $p\geq 10^{56}$.References
- R. de la Bretéche, M. Munsch, and G. Tenenbaum, Small Gál sums and applications. To appear, preprint available at arXiv:1906.12203, 2019.
- D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106–112. MR 93504, DOI 10.1112/S0025579300001157
- D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 (1962), 179–192. MR 132732, DOI 10.1112/plms/s3-12.1.179
- Mihai Cipu, Further remarks on Diophantine quintuples, Acta Arith. 168 (2015), no. 3, 201–219. MR 3342321, DOI 10.4064/aa168-3-1
- Stephen D. Cohen, Tomás Oliveira e Silva, and Tim Trudgian, On Grosswald’s conjecture on primitive roots, Acta Arith. 172 (2016), no. 3, 263–270. MR 3460815, DOI 10.4064/aa8109-12-2015
- Stephen D. Cohen and Tim Trudgian, On the least square-free primitive root modulo $p$, J. Number Theory 170 (2017), 10–16. MR 3541694, DOI 10.1016/j.jnt.2016.06.011
- D. A. Frolenkov and K. Soundararajan, A generalization of the Pólya-Vinogradov inequality, Ramanujan J. 31 (2013), no. 3, 271–279. MR 3081668, DOI 10.1007/s11139-012-9462-y
- E. Grosswald, On Burgess’ bound for primitive roots modulo primes and an application to $\Gamma (p)$, Amer. J. Math. 103 (1981), no. 6, 1171–1183. MR 636957, DOI 10.2307/2374229
- M. Hunter, The least square-free primitive root modulo a prime, Honours Thesis, ANU, 2016.
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- B. Kerr, I. E. Shparlinski, and K.-H. Yau, A refinement of the Burgess bound for character sums, Michigan. J. Math. (to appear), preprint available at arXiv:1711.10582, 2017.
- T. Jarso, B. Kerr, and I. E. Shparlinski, Grosswald’s conjecture on primitive roots. In preparation.
- Kevin J. McGown, On the constant in Burgess’ bound for the number of consecutive residues or non-residues. part 2, Funct. Approx. Comment. Math. 46 (2012), no. part 2, 273–284. MR 2931671, DOI 10.7169/facm/2012.46.2.10
- Kevin McGown, Enrique Treviño, and Tim Trudgian, Resolving Grosswald’s conjecture on GRH, Funct. Approx. Comment. Math. 55 (2016), no. 2, 215–225. MR 3584569, DOI 10.7169/facm/2016.55.2.5
- Karl K. Norton, Numbers with small prime factors, and the least $k$th power non-residue, Memoirs of the American Mathematical Society, No. 106, American Mathematical Society, Providence, R.I., 1971. MR 0286739
- Karl K. Norton, Bounds for sequences of consecutive power residues. I, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 213–220. MR 0332697
- J. Pretorius, The smallest primitive root modulo a prime. Submitted, preprint available at arXiv:1803.11061v1, 2018.
- O. Ramaré, Explicit average orders: News and problems, Number theory week 2017, Banach Center Publ., Vol. 118, 153–176, Polish Acad. Sci. Inst. Math., Warsaw, 2019. DOI 10.4064/bc118-1.
- Olivier Ramaré, Explicit estimates on several summatory functions involving the Moebius function, Math. Comp. 84 (2015), no. 293, 1359–1387. MR 3315512, DOI 10.1090/S0025-5718-2014-02914-1
- Herbert Robbins, A remark on Stirling’s formula, Amer. Math. Monthly 62 (1955), 26–29. MR 69328, DOI 10.2307/2308012
- Guy Robin, Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombre premier et grandes valeurs de la fonction $\omega (n)$ nombre de diviseurs premiers de $n$, Acta Arith. 42 (1983), no. 4, 367–389 (French). MR 736719, DOI 10.4064/aa-42-4-367-389
- Enrique Treviño, The Burgess inequality and the least $k$th power non-residue, Int. J. Number Theory 11 (2015), no. 5, 1653–1678. MR 3376232, DOI 10.1142/S1793042115400163
- Enrique Treviño, The least $k$-th power non-residue, J. Number Theory 149 (2015), 201–224. MR 3296008, DOI 10.1016/j.jnt.2014.10.019
Bibliographic Information
- Kevin J. McGown
- Affiliation: Department of Mathematics and Statistics, California State University, Chico, California 95929; and School of Science, P.O. Box 7916, The University of New South Wales, Canberra, ACT, 2610 Australia
- MR Author ID: 768800
- ORCID: 0000-0002-5925-801X
- Email: kmcgown@csuchico.edu
- Tim Trudgian
- Affiliation: School of Science, P.O. BOX 7916, The University of New South Wales, Canberra, ACT, 2610 Australia
- MR Author ID: 909247
- Email: t.trudgian@adfa.edu.au
- Received by editor(s): April 28, 2019
- Received by editor(s) in revised form: July 24, 2019
- Published electronically: October 28, 2019
- Additional Notes: The second author was supported by Australian Research Council Future Fellowship FT160100094
- Communicated by: Amanda Folsom
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 1049-1061
- MSC (2010): Primary 11A07, 11L40
- DOI: https://doi.org/10.1090/proc/14800
- MathSciNet review: 4055934