A note on Non-Noetherian Cohen-Macaulay rings
HTML articles powered by AMS MathViewer
- by Youngsu Kim and Andrew Walker
- Proc. Amer. Math. Soc. 148 (2020), 1031-1042
- DOI: https://doi.org/10.1090/proc/14836
- Published electronically: December 6, 2019
- PDF | Request permission
Abstract:
In this note, we study the Cohen-Macaulayness of non-Noetherian rings. We show that Hochster’s celebrated theorem that a finitely generated normal semigroup ring is Cohen-Macaulay does not extend to non-Noetherian rings. We also show that for any valuation domain $V$ of finite Krull dimension, $V[x]$ is Cohen-Macaulay in the sense of Hamilton-Marley.References
- Mohsen Asgharzadeh, Mehdi Dorreh, and Massoud Tousi, Direct limits of Cohen-Macaulay rings, J. Pure Appl. Algebra 218 (2014), no. 9, 1730–1744. MR 3188868, DOI 10.1016/j.jpaa.2014.01.010
- Bernard Alfonsi, Grade non-noethérien, Comm. Algebra 9 (1981), no. 8, 811–840 (French). MR 611560, DOI 10.1080/00927878108822620
- David F. Anderson, Robert Gilmer’s work on semigroup rings, Multiplicative ideal theory in commutative algebra, Springer, New York, 2006, pp. 21–37. MR 2265799, DOI 10.1007/978-0-387-36717-0_{2}
- Mohsen Asgharzadeh and Massoud Tousi, On the notion of Cohen-Macaulayness for non-Noetherian rings, J. Algebra 322 (2009), no. 7, 2297–2320. MR 2553201, DOI 10.1016/j.jalgebra.2009.06.017
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- M. P. Brodmann and R. Y. Sharp, Local cohomology, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 136, Cambridge University Press, Cambridge, 2013. An algebraic introduction with geometric applications. MR 3014449
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Marco D’Anna, Carmelo A. Finocchiaro, and Marco Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633–1641. MR 2593689, DOI 10.1016/j.jpaa.2009.12.008
- Sarah Glaz, On the weak dimension of coherent group rings, Comm. Algebra 15 (1987), no. 9, 1841–1858. MR 898295, DOI 10.1080/00927878708823507
- Sarah Glaz, Commutative coherent rings, Lecture Notes in Mathematics, vol. 1371, Springer-Verlag, Berlin, 1989. MR 999133, DOI 10.1007/BFb0084570
- Sarah Glaz, On the coherence and weak dimension of the rings $R\langle x\rangle$ and $R(x)$, Proc. Amer. Math. Soc. 106 (1989), no. 3, 579–587. MR 961405, DOI 10.1090/S0002-9939-1989-0961405-9
- Sarah Glaz, Coherence, regularity and homological dimensions of commutative fixed rings, Commutative algebra (Trieste, 1992) World Sci. Publ., River Edge, NJ, 1994, pp. 89–106. MR 1421079
- Sarah Glaz, Homological dimensions of localizations of polynomial rings, Zero-dimensional commutative rings (Knoxville, TN, 1994) Lecture Notes in Pure and Appl. Math., vol. 171, Dekker, New York, 1995, pp. 209–222. MR 1335716
- Tracy Dawn Hamilton, Weak Bourbaki unmixed rings: a step towards non-Noetherian Cohen-Macaulayness, Rocky Mountain J. Math. 34 (2004), no. 3, 963–977. MR 2087441, DOI 10.1216/rmjm/1181069837
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620, DOI 10.1007/BFb0073971
- Tracy Dawn Hamilton and Thomas Marley, Non-Noetherian Cohen-Macaulay rings, J. Algebra 307 (2007), no. 1, 343–360. MR 2278059, DOI 10.1016/j.jalgebra.2006.08.003
- Livia Hummel and Thomas Marley, The Auslander-Bridger formula and the Gorenstein property for coherent rings, J. Commut. Algebra 1 (2009), no. 2, 283–314. MR 2504937, DOI 10.1216/JCA-2009-1-2-283
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, DOI 10.2307/1970791
- M. Hochster, Grade-sensitive modules and perfect modules, Proc. London Math. Soc. (3) 29 (1974), 55–76. MR 374118, DOI 10.1112/plms/s3-29.1.55
- Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, Twenty-four hours of local cohomology, Graduate Studies in Mathematics, vol. 87, American Mathematical Society, Providence, RI, 2007. MR 2355715, DOI 10.1090/gsm/087
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- D. G. Northcott, Finite free resolutions, Cambridge Tracts in Mathematics, No. 71, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR 0460383, DOI 10.1017/CBO9780511565892
- Gabriel Sabbagh, Coherence of polynomial rings and bounds in polynomial ideals, J. Algebra 31 (1974), 499–507. MR 347796, DOI 10.1016/0021-8693(74)90128-8
- Peter Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand. 92 (2003), no. 2, 161–180. MR 1973941, DOI 10.7146/math.scand.a-14399
- Jean-Pierre Soublin, Anneaux et modules cohérents, J. Algebra 15 (1970), 455–472 (French). MR 260799, DOI 10.1016/0021-8693(70)90050-5
- Wolmer V. Vasconcelos, The rings of dimension two, Lecture Notes in Pure and Applied Mathematics, Vol. 22, Marcel Dekker, Inc., New York-Basel, 1976. MR 0427290
Bibliographic Information
- Youngsu Kim
- Affiliation: Department of Mathematics, University of Arkansas, Fayetteville, Arkansas 72701
- MR Author ID: 989789
- ORCID: 0000-0002-0705-9561
- Email: yk009@uark.edu
- Andrew Walker
- Affiliation: Department of Mathematics, College of Charleston, Charleston, South Carolina 29424
- Address at time of publication: 2860 Seitzland Road, Glen Rock, Pennsylvania 17327
- MR Author ID: 1333050
- Email: walkeraj@cofc.edu, ajwalk010@gmail.com
- Received by editor(s): January 10, 2019
- Received by editor(s) in revised form: July 21, 2019
- Published electronically: December 6, 2019
- Additional Notes: The first author is the corresponding author.
- Communicated by: Claudia Polini
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 1031-1042
- MSC (2010): Primary 13H10
- DOI: https://doi.org/10.1090/proc/14836
- MathSciNet review: 4055932