Concordances from differences of torus knots to $L$-space knots
HTML articles powered by AMS MathViewer
- by Samantha Allen
- Proc. Amer. Math. Soc. 148 (2020), 1815-1827
- DOI: https://doi.org/10.1090/proc/14833
- Published electronically: December 30, 2019
- PDF | Request permission
Abstract:
It is known that connected sums of positive torus knots are not concordant to $L$-space knots. Here we consider differences of torus knots. The main result states that the subgroup of the concordance group generated by two positive torus knots contains no nontrivial $L$-space knots other than the torus knots themselves. Generalizations to subgroups generated by more than two torus knots are also considered.References
- Paolo Aceto and Antonio Alfieri, On sums of torus knots concordant to alternating knots, Bull. Lond. Math. Soc. 51 (2019), no. 2, 327–343. MR 3937591, DOI 10.1112/blms.12228
- P. Aceto, D. Celoria, and J. Park, Rational cobordisms and integral homology, arxiv.org/abs/1811.01433.
- A. Alfieri, Upsilon type concordance invariants, arxiv.org/abs/1709.01594.
- A. Alfieri, S. Kang, and A. I. Stipsicz, Connected Floer homology of covering involutions, arxiv.org/abs/1905.11613.
- Maciej Borodzik and Charles Livingston, Heegaard Floer homology and rational cuspidal curves, Forum Math. Sigma 2 (2014), Paper No. e28, 23. MR 3347955, DOI 10.1017/fms.2014.28
- Peter Feller and David Krcatovich, On cobordisms between knots, braid index, and the upsilon-invariant, Math. Ann. 369 (2017), no. 1-2, 301–329. MR 3694648, DOI 10.1007/s00208-017-1519-1
- Stefan Friedl, Charles Livingston, and Raphael Zentner, Knot concordances and alternating knots, Michigan Math. J. 66 (2017), no. 2, 421–432. MR 3657225, DOI 10.1307/mmj/1491465685
- Matthew Hedden and Liam Watson, On the geography and botany of knot Floer homology, Selecta Math. (N.S.) 24 (2018), no. 2, 997–1037. MR 3782416, DOI 10.1007/s00029-017-0351-5
- Robion C. Kirby and W. B. Raymond Lickorish, Prime knots and concordance, Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 3, 437–441. MR 542689, DOI 10.1017/S0305004100056280
- David Krcatovich, The reduced knot Floer complex, Topology Appl. 194 (2015), 171–201. MR 3404612, DOI 10.1016/j.topol.2015.08.008
- R. A. Litherland, Signatures of iterated torus knots, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977) Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 71–84. MR 547456
- Charles Livingston, Notes on the knot concordance invariant upsilon, Algebr. Geom. Topol. 17 (2017), no. 1, 111–130. MR 3604374, DOI 10.2140/agt.2017.17.111
- Charles Livingston, Concordances from connected sums of torus knots to $L$-space knots, New York J. Math. 24 (2018), 233–239. MR 3778502
- Robert Myers, Homology cobordisms, link concordances, and hyperbolic $3$-manifolds, Trans. Amer. Math. Soc. 278 (1983), no. 1, 271–288. MR 697074, DOI 10.1090/S0002-9947-1983-0697074-4
- Peter Ozsváth and Zoltán Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615–639. MR 2026543, DOI 10.2140/gt.2003.7.615
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158. MR 2113019, DOI 10.4007/annals.2004.159.1027
- Peter Ozsváth and Zoltán Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6, 1281–1300. MR 2168576, DOI 10.1016/j.top.2005.05.001
- Peter S. Ozsváth, András I. Stipsicz, and Zoltán Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017), 366–426. MR 3667589, DOI 10.1016/j.aim.2017.05.017
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc., Houston, TX, 1990. Corrected reprint of the 1976 original. MR 1277811
- C. T. C. Wall, Singular points of plane curves, London Mathematical Society Student Texts, vol. 63, Cambridge University Press, Cambridge, 2004. MR 2107253, DOI 10.1017/CBO9780511617560
- R. Yozgyur, Knots not concordant to L-space knots, arxiv.org/abs/1905.02461.
- Ian Zemke, Connected sums and involutive knot Floer homology, Proc. Lond. Math. Soc. (3) 119 (2019), no. 1, 214–265. MR 3957835, DOI 10.1112/plms.12227
Bibliographic Information
- Samantha Allen
- Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
- Email: samantha.g.allen@dartmouth.edu
- Received by editor(s): March 18, 2019
- Received by editor(s) in revised form: August 1, 2019, and August 20, 2019
- Published electronically: December 30, 2019
- Communicated by: David Futer
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 1815-1827
- MSC (2010): Primary 57M25
- DOI: https://doi.org/10.1090/proc/14833
- MathSciNet review: 4069217