Symplectic triangle inequality
HTML articles powered by AMS MathViewer
- by Vsevolod Shevchishin and Gleb Smirnov
- Proc. Amer. Math. Soc. 148 (2020), 1389-1397
- DOI: https://doi.org/10.1090/proc/14842
- Published electronically: January 6, 2020
- PDF | Request permission
Abstract:
We prove a non-squeezing result for Lagrangian embeddings of the real projective plane into blow-ups of the symplectic ball.References
- Michèle Audin, Quelques remarques sur les surfaces lagrangiennes de Givental′, J. Geom. Phys. 7 (1990), no. 4, 583–598 (1991) (French, with English summary). MR 1131914, DOI 10.1016/0393-0440(90)90008-Q
- Matthew Strom Borman, Tian-Jun Li, and Weiwei Wu, Spherical Lagrangians via ball packings and symplectic cutting, Selecta Math. (N.S.) 20 (2014), no. 1, 261–283. MR 3182449, DOI 10.1007/s00029-013-0120-z
- Ronald Fintushel and Ronald J. Stern, Rational blowdowns of smooth $4$-manifolds, J. Differential Geom. 46 (1997), no. 2, 181–235. MR 1484044
- Robert E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527–595. MR 1356781, DOI 10.2307/2118554
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- R. Hind and E. Opshtein, Squeezing Lagrangian tori in dimension $4$, Preprint, arXiv:1901.02124.
- T. Khodorovsky, Symplectic Rational Blow-up, Preprint, arXiv:1303.2581v1.
- Tatyana Khodorovskiy, Smooth embeddings of rational homology balls, Topology Appl. 161 (2014), 386–396. MR 3132378, DOI 10.1016/j.topol.2013.10.039
- François Lalonde and Dusa McDuff, The classification of ruled symplectic $4$-manifolds, Math. Res. Lett. 3 (1996), no. 6, 769–778. MR 1426534, DOI 10.4310/MRL.1996.v3.n6.a5
- Tian-Jun Li and Ai-Ko Liu, Uniqueness of symplectic canonical class, surface cone and symplectic cone of 4-manifolds with $B^+=1$, J. Differential Geom. 58 (2001), no. 2, 331–370. MR 1913946
- John D. McCarthy and Jon G. Wolfson, Symplectic normal connect sum, Topology 33 (1994), no. 4, 729–764. MR 1293308, DOI 10.1016/0040-9383(94)90006-X
- Tian-Jun Li and Weiwei Wu, Lagrangian spheres, symplectic surfaces and the symplectic mapping class group, Geom. Topol. 16 (2012), no. 2, 1121–1169. MR 2946805, DOI 10.2140/gt.2012.16.1121
- S. Yu. Nemirovskiĭ, The homology class of a Lagrangian Klein bottle, Izv. Ross. Akad. Nauk Ser. Mat. 73 (2009), no. 4, 37–48 (Russian, with Russian summary); English transl., Izv. Math. 73 (2009), no. 4, 689–698. MR 2583965, DOI 10.1070/IM2009v073n04ABEH002462
- Margaret Symington, Symplectic rational blowdowns, J. Differential Geom. 50 (1998), no. 3, 505–518. MR 1690738
- Margaret Symington, Four dimensions from two in symplectic topology, Topology and geometry of manifolds (Athens, GA, 2001) Proc. Sympos. Pure Math., vol. 71, Amer. Math. Soc., Providence, RI, 2003, pp. 153–208. MR 2024634, DOI 10.1090/pspum/071/2024634
- V. V. Shevchishin, Lagrangian embeddings of the Klein bottle and the combinatorial properties of mapping class groups, Izv. Ross. Akad. Nauk Ser. Mat. 73 (2009), no. 4, 153–224 (Russian, with Russian summary); English transl., Izv. Math. 73 (2009), no. 4, 797–859. MR 2583968, DOI 10.1070/IM2009v073n04ABEH002465
Bibliographic Information
- Vsevolod Shevchishin
- Affiliation: Faculty of Mathematics and Computer Science, University of Warmia and Mazury, ul. Słoneczna 54, 10-710 Olsztyn, Poland
- MR Author ID: 321099
- ORCID: 0000-0002-1640-2843
- Email: shevchishin@gmail.com
- Gleb Smirnov
- Affiliation: Department of Mathematics, ETH Zürich, Raemistrasse 101, 8092 Zurich, Switzerland
- Email: gleb.smirnov@math.ethz.ch
- Received by editor(s): April 29, 2019
- Received by editor(s) in revised form: July 5, 2019, and August 4, 2019
- Published electronically: January 6, 2020
- Additional Notes: The second author was supported by an ETHZ Postdoctoral Fellowship.
- Communicated by: David Futer
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 1389-1397
- MSC (2010): Primary 14J26, 32Q65, 53D05, 53D12, 57R17
- DOI: https://doi.org/10.1090/proc/14842
- MathSciNet review: 4069179