On Heinz-type inequality for the half-plane and Gaussian curvature of minimal surfaces
HTML articles powered by AMS MathViewer
- by David Kalaj
- Proc. Amer. Math. Soc. 148 (2020), 1757-1764
- DOI: https://doi.org/10.1090/proc/14852
- Published electronically: December 30, 2019
- PDF | Request permission
Abstract:
We prove a Heinz-type inequality for harmonic diffeomorphisms of the half-plane onto itself. We then apply this result to prove certain sharp bound of the Gaussian curvature of a minimal surface, provided that it lies above the whole half-plane in $\mathbf {R}^3$.References
- Yusuf Abu-Muhanna and Glenn Schober, Harmonic mappings onto convex domains, Canad. J. Math. 39 (1987), no. 6, 1489–1530. MR 918391, DOI 10.4153/CJM-1987-071-4
- Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 1992. MR 1184139, DOI 10.1007/b97238
- Peter Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, vol. 156, Cambridge University Press, Cambridge, 2004. MR 2048384, DOI 10.1017/CBO9780511546600
- R. Finn and R. Osserman, On the Gauss curvature of non-parametric minimal surfaces, J. Analyse Math. 12 (1964), 351–364. MR 166694, DOI 10.1007/BF02807440
- R. R. Hall, The Gaussian curvature of minimal surfaces and Heinz’ constant, J. Reine Angew. Math. 502 (1998), 19–28. MR 1647626, DOI 10.1515/crll.1998.088
- R. R. Hall, On an inequality of E. Heinz, J. Analyse Math. 42 (1982/83), 185–198. MR 729409, DOI 10.1007/BF02786878
- Erhard Heinz, On one-to-one harmonic mappings, Pacific J. Math. 9 (1959), 101–105. MR 104933
- Walter Hengartner and Glenn Schober, Curvature estimates for some minimal surfaces, Complex analysis, Birkhäuser, Basel, 1988, pp. 87–100. MR 981404
- David Kalaj, On harmonic diffeomorphisms of the unit disc onto a convex domain, Complex Var. Theory Appl. 48 (2003), no. 2, 175–187. MR 1954100, DOI 10.1080/0278107021000037001
- David Kalaj, A sharp inequality for harmonic diffeomorphisms of the unit disk, J. Geom. Anal. 29 (2019), no. 1, 392–401. MR 3897019, DOI 10.1007/s12220-018-9996-3
Bibliographic Information
- David Kalaj
- Affiliation: Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b. 81000 Podgorica, Montenegro
- MR Author ID: 689421
- Email: davidk@ucg.ac.me
- Received by editor(s): January 2, 2019
- Received by editor(s) in revised form: April 13, 2019, May 18, 2019, August 22, 2019, and August 28, 2019
- Published electronically: December 30, 2019
- Communicated by: Jeremy Tyson
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 1757-1764
- MSC (2010): Primary 53A10
- DOI: https://doi.org/10.1090/proc/14852
- MathSciNet review: 4069212